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The analytic structure of the hydrodynamic frequencies z(k) for the sound, 
heat, and shear modes and of the hydrodynamic equations for a monatomic 
fluid are discussed on the basis of the mode--mode coupling theory. It is 
shown that  the hydrodynamic frequencies depend on the wave number  k, 
for small k, as z(k) = ak + bk 2 + ~ , ~  c,k a-2-", and that  some of the 
correlation functions that  appear in the Fourier-Laplace transforms of the 
hydrodynamic equations contain branch point singularities. The implica- 
tions of these results for the derivation of linear hydrodynamic equations, 
such as the Burnett  equations, and for the long-time behavior of time 
correlation functions are discussed. 

KEY W O R D S  : Statistical mechanics; nonequilibrium statistical mechanics; 
hydrodynamic equations; Navier-Stokes equations; Burnett equations; 
time correlation functions. 

1.  I N T R O D U C T I O N  

T h e  s t u d y  o f  n o n a n a l y t i c  d i s p e r s i o n  r e l a t i o n s  in  c lass ica l  f luids  was  b e g u n  

in  a p r e v i o u s  p a p e r  ~1), h e r e a f t e r  r e f e r r e d  to  as  I. I n  I we d i s c u s s e d  k ine t i c  

t h e o r y  fo r  a m o d e r a t e l y  d e n s e  gas  o f  h a r d  sphe re s ,  a n d  s h o w e d  t h a t  as a 
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result of certain dynamical events taking place in the gas, hydrodynamic 
frequencies, such as the sound mode frequency z~, have a nonanalytic 
dependence on the wave number k of the form 

z~ = + ick + ak  2 + bk  512 + . . .  (1) 

We arrived at this result by deriving what are known as the mode-mode 
coupling integrals on the basis of dynamical arguments, and expressing the 
hydrodynamic frequencies directly in terms of  these integrals. 

To discuss the hydrodynamic frequencies for a more general class of 
fluids by arguments similar to those in I, a fundamental dynamical theory 
would be needed for such fluids. At the present time such a theory is not 
available. Instead, we shall assume that for a general class of fluids the hydro- 
dynamic frequencies are determined by the mode-mode coupling theory 
formulated on the basis of phenomenological arguments by Kadanoff and 
Swift, ~2~ Kawasaki, ~3~ and Ferrell, ~ and on the basis of  somewhat different 
arguments by Ernst et aL ~5~ Using the mode-mode coupling theory, we show 
that the nonanalytic wave number dependence typified by Eq. (1) also holds 
for a general class of fluids, and recover the results of  I in the limit of low 
density. In addition, we verify a conclusion of  Pomeau's ~6~ that there is, in 
the dispersion relation for the hydrodynamic frequencies, an infinite number 
of  powers of k between k 2 and k a with the general form k 2 +P,, where Pn = 
1 - 2  -". 

We will discuss in some detail other analytic features of  the decay of  
hydrodynamic disturbances in fluids that result from the mode-mode cou- 
pling theory, either as given here or as derived in I. These are: (i) the divergence 
of  the transport coefficients in the Burnett and super-Burnett hydrodynamic 
equations which result if one assumes ab initio that the corrections to the 
Navier-Stokes equations may be expanded in powers of the wave number, 
or in higher order gradients of  the hydrodynamic variables; (ii) the presence 
of  branch point singularities in the mode-mode integrals, noted first by 
Dufty(7~; and (iii) the relation between the k2+e,  terms in the dispersion 
relation and the t -(1 +P,~ terms which appear in the long-time behavior of the 
time correlation functions that determine the Navier-Stokes transport 
coefficients. 

The plan of  the paper is as follows. In Section 2 we will give a derivation 
of the hydrodynamic equations in a form most useful for our discussion. In 
Section 3 we apply the mode-mode theory and obtain the dispersion relations. 
In Section 4 we discuss the effect of the branch point singularities on the 
decay of hydrodynamic disturbances. In Section 5 we consider the long-time 
decay of the time correlation functions, and also discuss the convergence of 
the infinite series of terms that appears in the dispersion relations. In Section 
6 we discuss the divergence of  the transport coefficients associated with the 



Nonanalytic Dispersion Relations for Classical Fluids 313 

Burnett and super-Burnett equations. Finally, in Section 7 we discuss our 
results. 

2. GENERALIZED H Y D R O D Y N A M I C S  

Consider a collection of  N identical particles of  mass m, confined to a 
volume V. The particles interact with central, pairwise forces and obey 
classical mechanics. The hydrodynamic equations for such a system are 
equations for the average number, momentum, and energy densities, which 
are considered to be suitably defined averages of  the microscopic number 
density n(r), momentum density g(r), and energy density e(r): 

N 

n(r )  = r)  
t = 1  

N 

g(r) = ~ mv~ 3 ( r , -  r) (2) 
~=1 

N 

e ( r )  = e ,  - r )  
i = l  

Here r, and v~ denote the position and velocity of particle i, and e, is the 
energy of the ith particle: 

1 
ei = �89 2 -k- ~ ~ +(rii) ( 2 a )  

i ( r  

where r is the pair potential and r,j = [r~j] = J r , -  rj], so that H = 
f dr e(r) is the Hamiltonian of the system. 

The average number, momentum, and energy densities that appear in 
the hydrodynamic equations are denoted by <a(r, t)>, where a = n, g, or e. 
The nonequilibrium average is taken over the normalized initial distribution 
function p0(1 + ~u(0)), where po is the grand canonical equilibrium distribu- 
tion function 

po = (ZgrN!)- l(m/h)3U e x p ( -  flH + vN) (3) 

Here h is Planck's constant; fl = 1/ksT, where k8 is Boltzmann's constant 
and T is temperature; v = fl/~, where /~ is the chemical potential; and Zgr 
is the grand canonical partition function 

Zgr = ~ (N!)-l(m/h)3N f dF N e x p ( - f i H  + vN) (4) 
N 

where dFN = dr~ dr2 .-. dru dr1 dr2 ..- dvN is the differential volume in phase 
space. The mass m appears in (3) and (4) since we have chosen the velocities 
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instead of the momenta as phase space variables. The quantity (l)u(0) repre- 
sents the initial deviation from total equilibrium, and since the initial distribu- 
tion function and p0 are normalized, we have 

(NI)-l(m/h)aN f dPN po(I)N(0) = 0 (5) 

The nonequilibrium average is now given by 

(a(r, t ))  = (a(r, t))eq + ((I)N(0)a(r, t))eq (6) 

where (...~eq is an average over the grand canonical distribution (3). The time 
dependence of the microscopic function a(r, t) is formally given by 

a(r, t) = etZa(r) (7) 

where L is the Liouville operator, defined as 

L . . . .  {..., H} (8) 

and {..-, .--} are the Poisson brackets. It will be convenient to impose periodic 
boundary conditions and to consider Fourier transforms of  the microscopic 
densities, defined in general as 

= fv dr [exp(-ik.r)]{a(r)  - (a(r)~oq} (9) a k  

so that due to translational invariance 

2I 

nk = ~ exp(- - ik ' r0  -- V(n(r))ea 8k,0 
t = 1  

N 

gk = ~ my, exp ( - ik . r , )  (10) 

N 

ek = ~_, edexp(--ik.r,)] -- V(e(r)),q 8k,0 
4 = 1  

where 8k,0 is a Kronecker delta, and (n(r))e a = n and (e(r))~q = e are, 
respectively, the average number and energy density at thermal equilibrium. 
For  k = 0 we have 

no = N -  (N)~a, go = P, eo = H -  (H)oq (10a) 

where P is the total momentum of  the system. In the sequel we will also 
need Laplace transforms of  microscopic densities, defined as 

a k z  = dt e-~tak(t) = f~ak (11) 
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where f~ = (z - L)-1 is the resolvent operator, and according to (6) and 
(9), the average (akz) is given by 

(ak~) = ~ (Z~rUl)-~(m/h)aN f dFN po~N(O)(z - L)-~ak (12) 
N 

The macroscopic quantities of  interest to us, (a(r, t)),  can therefore be 
determined in terms of  the inverse Fourier-Laplace transforms of  the 
averages of ag~, and we now turn our attention to the development of the 
Zwanzig projection operator method (~ for obtaining the generalized hydro- 
dynamic equations satisfied by (akz). We first introduce an inner product 
between microscopic variables, such as ak and bq, as 

(ak, b.) = V-l(ak*bq)ea (13) 

where the asterisk denotes complex conjugation. Then, because of the 
translational invariance of the equilibrium average, the inner product satisfies 

(ak, b.) = 3k,.(ak, bk) (14) 

Instead of using the microscopic variables nk and ek it is more convenient 
to use linear combinations representing the local pressure Pk and the entropy 
per particle Sk: 

Pk = (~P/ee).ek + (~P/~n)~nk, Sk = (nT)-~{ek -- hnk} (15) 

Here h = n-  l(e + P)  and P is the equilibrium pressure. From the quantities 
S~, Pk, and gk we construct an approximately orthonormal set ak ~ with 

(ak', ak j) = 3,j + O(k 2) (16) 

where the labels (i, j )  stand for T, g = +,  r/l, or ~/2, with 

ak T =  (n/kBCp)~'2Sk (17a) 

( I k  ~ = (fl/Zp)~/2(c- ~Pk + o'k.gk. } (17b) 

a~,' = (/3/p)*/2~J.gk (17c) 

The set of  unit vectors k, kz *, and f~• are mutually orthogonal. The mass 
density p = ran, the specific heat per particle at constant pressure is Cp, and 
the zero-frequency adiabatic sound velocity is c, defined by c 2 = (OP/Op)s. 
These microscopic variables are closely related to the hydrodynamic modes 
of  the kinetic equation used in I. The orthogonality condition to order k 2 in 
(16) will be sufficient here. In order to verify the relations (16) one needs a 
number of fluctuation formulas. These formulas, and others needed for later 
developments in this paper, are discussed in Appendix A. In fact, one can 
make the orthonormality conditions (16) exact to all orders in k by intro- 
ducing k-dependent generalizations of the thermodynamic quantities (aP/ae),~, 
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(OP/~n)e, and h in (15). This introduces k-dependent generalizations of the 
specific heat Cv and the sound velocity c. (2,9,1~ For small values of k, all 
k-dependent quantities deviate from their lowest order contribution by terms 
of relative order k 2, whose coefficients can be expressed in terms of  equilibrium 
distribution functions. 

After this introduction on notation and definitions we turn our attention 
to the equations of  generalized hydrodynamics. The derivation of  these 
equations also yields explicit expressions for the generalized transport 
coefficients, which will be needed for actual calculations. Therefore, a 
projection operator P is defined as 

Pb = ~ ~ ak'(ak', b) (18) 

where the sum over i designates the five functions given by (17a)-(17c), and 
b is an arbitrary function of the phase variables. We also define P l  = 1 - P, 
and notice that p 2 =  p as a consequence of  (16). When the projection 
operator P acts on a special Fourier component bk, it reduces to 

Pbk = ~_, ak'(ak', bk) (19) 

by virtue of (14). The operator P projects on the hydrodynamic subspace 
spanned by ek, nl,, and gk, or by the ak ~ in (17a)-(17c), and Pl  projects on 
its orthogonal complement. 

We now use the projection operator to solve the equation of motion 
for a~,~, defined in (11), which reads 

(z - L)a~,, = ak" (20) 

We write a~,~ = Pa~,~ + P.a~,~, apply P and P .  respectively to (20), solve the 
second equation for P• and insert the result into the first equation, 
obtaining 

[z - PLP  - PLP• - P ,LP•  = ak r (21) 

Written out in component form this equation is 

~.  {z 8~j + ikf2,j(k) + k2Uij(k, z)}f~jr(k, z) = ~ (22) 
J 

where f~j are hydrodynamic propagators or correlation functions of hydro- 
dynamic variables 

fg~j(k, z) = (ak t, a/~) = (ak~,fg~ak ;) (23) 

The matrix s is referred to as the frequency matrix and is defined by 

--ikf2,j(k) = (ak', Lak') (24) 
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The transport matrix U~j is defined by 

- k z U,,(k, z) = (ak ~, LP.Lzf~P• j) (25) 

where we have introduced the projected resolvent operator 

~ = P . ( z  - P.LP• (26) 

Equations (22) for the hydrodynamic propagators are exact. They are, how- 
ever, not the equations of motion for Fourier-Laplace transforms of the 
macroscopic hydrodynamic variables, which can be expressed as linear 
combinations of the quantities (a~,~) defined in (12) as 

(a~,~) = (ON(0)aj,~)eq (27) 

To find the equation of motion for (a[,~), we write 

a~  = Pa~,~ + Pja[,~ = Pa[,~ + P• (28) 

where the second equality follows directly from applying P .  to (20). By 
inserting (28) into (27) and using (19), we obtain 

(a~,~) = ~ ~r,(k, z)(qbN(0)(ak r + P.tf~P• (29) 
T 

Since ~r~(k, z) = ~r162 t), as shown below, the generalized hydrodynamic 
equations can be obtained by multiplying (22) by (q~N(0){ak ~ + P . ~ P . L a k r ) e a  
and summing over r, and are given by 

(z 3ij + ikf2,j(k) + k 2 Uij(k, z)}(aJk,) 
J 

= (ak'(O) + P•177 (30) 

The second term on the right-hand side of (30) serves as a correction term 
to the initial condition term (ak~(0)). In the usual form of the linearized 
hydrodynamic equations, it is not taken into account since it is of order k. 

Having obtained equations for the hydrodynamic propagators (22) and 
the linear generalized hydrodynamic equations (30), we devote the rest of 
this section to obtaining more explicit expressions for the matrices s and 
U~s. First, note that fY~y(k, z), ~ j (k ) ,  and U~(k, z) are symmetric on inter- 
change of i and j ,  which can be proved by using Liouville's theorem and the 
transformation r~ -+ -r~. These matrices are symmetric because we are using 
orthonormal basis functions, such as ak ~. The advantage of this choice of 
basis functions (17) is that it diagonalizes the matrix ~(k) to lowest order 
in k. 

The quantities Lak ~ appearing in the expressions for ~)~j and U~j represent 
the rate of change of (linear combinations of) the microscopic particle, 
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energy, and momentum densities, and satisfy microscopic conservation laws 
of  the form 

Lak ~ = -- ik-jk i = -- ikj~x (31) 

where, for  convenience, we take k = k~:, where i is a unit vector in the x 
direction. The quantities j~x, f rom (8) and (17), are 

J~x = (n/kBCp)ll2j~x = (~/nTCp)i/2(j{,x - hj~,~) (32a) 

J~,~=-~2 [! [/3'~'2"P1-~) Jk~ + 4~,~] 
= ( /3  ~1t2[1 [ a P ~ . ,  1 (OP~ j~x erkxx] 

(32b) 

J~x = (/3/P)l/%k~ (32c) 

j ~  = (13/p)~/erk~ (32d) 

�9 r/2 Jk~ = (fi/P)*/2"rkx~ (32e) 

where 
N 

j ~  = ~ vi~ e x p ( - i k . r i )  (33a) 
i = l  

i = l  ~ = X , y , . ~  

N 

z k ~  = ~ [mv, xv,~ + ~-,,~.(k)] e x p ( - i k . r , )  (33c) 

with c, = x,  y, or z, and 

1 O(~(r~j) 1 - exp(ik-r.-) (34) 

t ( ~ i )  

Expressions (33a)-(33c) for  the particle, energy, and momentum densities are 
considered previously by Schofield3 ~> The frequency matrix can be written 
as 

f2,j(k) = (a, . ' , j~)  = (j/,~, ak j) (35) 

and 

U,~(k, z) = (.~x, ff~js{~) (36) 

where we have introduced the projected currents 

j~,,~ = PJ_j~,x = J~,x - ~.. ak'f2jiO x)  (37) 
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An observation that greatly reduces the number of matrix elements f~. and 
U~; is that all matrix elements of  f2 u and U~j vanish when one index denotes 
a shear mode ~h and the other index denotes a non-shear mode, or when each 
index refers to a different shear mode. In either case the required velocity 
integrals vanish. It is now possible to compute f2~j(k), and we obtain 

and 

g2~(k) = crc (38a) 

f2,,(k) = 0 (38b) 

in all other cases, where we have used the relations 

(jd~, gkx) = (Sk, ~'kx~) = 0 (39) 

(jr g~x) = (Pk,  ~k~x) = pc2~[ ~ (4o) 

The first equalities in (39) and (40) follow from (35); the second set of  
equalities is discussed in Appendix A. We first consider the components of 
the currents in the hydrodynamic subspace, i.e., Pj~,~. From (19), (39), and 
(40), we deduce immediately 

Pj~,~ = p -  ~figkx(gk~, J~,x) = J ~  (41a) 

ej~,~ = P-~f lgk~(gk , : , jg~)  = 0 (41b) 

P-cj, x,: = ( n / k ~ C e ) S k ( S k ,  "rkx~) + ( f l lpc2)Pk(Pk ,  "q,~x) = Pk  (41c) 

Prkx~ = P~'k~z = 0 (41d) 

The nonhydrodynamic components j~x are, according to (37) and (41), 

where 

.7~.= = [(y - 1)/21~/57L + (,C,,/2))~,x 
A 

j~,. = (/~/p)*~=e,,~. 

(42a) 

(42b) 

(42c) 

(42d) 

(42e) 

f f ,  x = j~,,: - hj~,x (43a) 

~kxx = rkx~ - Pk (43b) 

To derive (42b), we need the thermodynamic identity (TCp/mc2) l / z (SP/ee) ,~  = 
( ~ , -  1) 1/2, where ~, = C p / C v .  We express the nonzero matrix elements 
U~j(k, z) in terms of generalized transport coefficients, using (36) and (42). 
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For later convenience we also consider the case where i and/or j take the 
value/, although U~z and Uu are not elements of the matrix U~(k, z) of (36). 
We have now 

U ~ ( k ,  z) 

U~,~, z) 

U,,,,,(k, z) 

Utv(k, z) 

u~,(k, z) 

U~._~(k, z) 

U~.~(k, z) 

= D~(k, z) = a(k, z ) / n C ,  (44a) 

= D~(k, z) (44b) 

= Dn(k, z) = ~7(k, z) /p (i = 1, 2) (44c) 

= V~,(k, z) : (pc~T)-~(7 - 1V~0(k, z) (44d) 

= (1/2)(7, - 1)UTT(k, z) + ( 1 / 2 ) U u ( k , z )  + (7(~, - 1)~/2U~ct(k, z ) 
(44e) 

= (1/2)(~, - 1)UTT(k, z)  -- ( 1 / 2 ) U u ( k ,  z )  (44f) 

= U~T(k, z) = [(y - 1)/2]~/2U~.v(k, z) + ((r/~c/2)Ur~(k, z) (44g) 

where ~- - -n- l (On/OT)v  is the coefficient of thermal expansion, and in 
(44d) we used the thermodynamic identity ( p n T C p )  ~/2 = p c ( ~ T ( 7  - 1) -1/2. 
The generalized transport coefficients are defined as follows: 

TA(k, z) =/3(j~,x, f~zJ~,x) (45a) 

~/(k, z) =/3(~-kx,, f ~ r k x u )  (45b) 

oD,(k,  z) = / ~ ( ~ x ~ ,  ~z~, ,~)  (45c) 

0(k, z) = /3(~k~, f~j~,x) = fl(J~,x,f~,§ (45d) 

Here h(k, z) is the (generalized) coefficient of thermal conductivity, ~7(k, z) 
is the shear viscosity, D,(k, z) is the longitudinal diffusivityfl and 0(k, z) is a 
new transport coefficient describing the cross effects between the macroscopic 
heat current and the longitudinal momentum current [see Eqs. (137a) and 
(137b)]. 

We note in passing that U~j(k, z) is not the Laplace transform of the 
time correlation function of two currents. Such a Laplace transform, denoted 
by C~j(k, z), is given by 

C,j(k, z) = (j~,~, f~)~:r (46) 

and differs from U~j(k, z) in that C~j(k, z) contains the resolvent ~ = 
(z - L)-  1 while U~j(k, z) contains the projected resolvent ~ given by (26). 

3 It does not seem meaningful to introduce, for k r 0, a k-dependent bulk viscosity, 
since the two obvious generalizations, either through the relation 

~(k, z)  = pD , ( k ,  z)  - �88 z) 
or through 

~'(k, z) = ~ ~ ( ~ ,  ~ ) ,  ~, ~ = x, y, z 
ct,B 

lead to different results which coincide only at k = 0. 
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Van Leeuwen and Ernst a~ and Zwanzig (8) have shown that the two matrices 
C~j and U,j are related to each other by the matrix relation 

C = (zl + ik~2).(zl + ik~ + k2U)-~.U (47) 

which may be derived from the relations 

U(k, z) = C(k, z) + ikN(k, z).U(k, z) 
(48) 

zN(k, z) = - ikC(k,  z) - ikN(k, z) .n(k)  

where 
A 

N~j(k, z) = (J~x, ~ a k  j) (49) 

The component (~h, ~7~) of (47) has a particularly simple form, i.e., 

C,,n~(k, z) = zDn(k, z)[z + k2D,Or z)] -1 (50) 

The connection between the Green-Kubo formulas for the Navier-Stokes 
transport coefficients and our formulas follows immediately from (47): 

lira lira C~j(k, z) = lim lira U~j(k, z) (51) 
z ~ 0  k ~ 0  z ~ 0  k - * 0  

Consequently, in the limit indicated above, the generalized transport coeffi- 
cients approach the usual time correlation function expressions for the 
Navier-Stokes transport coefficients A, 71, pD~ = (4/3)• + ~, where ~ is the 
bulk viscosity and lim 0(k, z) = 0 as k --> 0. 

So far we have obtained the Laplace transform of the hydrodynamic 
equations (30) and the equations (22) for the hydrodynamic propagators, 
together with explicit expressions for the quantities appearing in these equa- 
tions. We are now interested in the behavior of the hydrodynamic variables 
(nk(t)), (gk(t)), and (ek(t)) for small values of k and for large values of the 
time t. In order to find this behavior, we have to solve (30) and invert the 
Laplace transforms, i.e., 

fr dz e~t ~ (zl + ik~2(k) + k2U(k, z)}51 
(ak'( t ) )  = ~ J 

• (ak'(0) + P•177 (52) 

The integral has to be taken along a path F in the complex z plane, running 
parallel to the imaginary axis and to the right of all singularities of the 
integrand in (52). In order to proceed, we have to investigate the analytic 
properties of U~j(k, z) and (P• as functions of z around z = 0 
for small values of the parameter k. If  these functions were regular around 
z = 0, the long-time behavior of ak~(t) would be completely determined by 
the poles in the integrand (52) lying in the half-plane Re z < 0, and lying 
closest to the imaginary axis (the hydrodynamic poles). The functions 
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(akr( t ) )  would behave as a sum of  decaying exponentials, where the decay 
constants are given as the real parts of the hydrodynamic poles. The hydro- 
dynamic poles are the roots of the secular determinant of the hydrodynamic 
matrix in (22) or (30), i.e., 

detlz ~j + ikf~j(k) + k2U~j(k, z)l = 0 (53) 

which approach zero as k becomes small. These roots, z~(k), called the 
hydrodynamic frequencies, are found from (53) as functions z~(k) of  k. The 
functions are called dispersion relations. 

To lowest order in k, the hydrodynamic frequencies completely deter- 
mine the long-time behavior of  (ak~(t)). This can be seen from (52), since 
U~j(k, z) approaches the constant Navier-Stokes transport coefficients, and 
(Px f~PxLakJ(O))  = --ik(~bn(O)P• by virtue of(27) and (31). Thus this 
initial condition correction term is proportional to k, and can therefore be 
neglected with respect to (akJ(0)) = (qbN(0)akJ)eq in (52). 

If  the functions U~j(k, z) and (qbn(0)Pff~j~x)eq are not regular around 
z = 0, one needs to know the locations and nature of  their singularities, such 
as branch points. This subject will be discussed in Section 4, while Section 3 
is devoted to the dispersion relations. Henceforth we will neglect the initial 
condition correction term in (52), since it is proportional to k in the limit of 
small z and k, and its coefficient (qbn(0)P.~C0)~x)eq is simply a constant. This 
coefficient has basically the same structure as the matrix elements U,j(k, z), 
which are known to exist for k = z = 0 in three-dimensional fluids, and for 
consistency with other approximations, any correction terms proportional to 
k should be neglected. In Section 4 it will also be shown that the hydrodynamic 
frequencies determine the long-time behavior of  (ak*(t))  to the order of k, 
in which we are interested. 

3. D I S P E R S I O N  R E L A T I O N S  

In this section we will determine the hydrodynamic frequencies for small 
values of  k by solving the secular equation (53). To do so, we will use the 
phenomenological mode-mode coupling theory to describe the behavior of  
U~j(k, z) for small values of  k and z. In Ref. 1 we showed that there exist 
nonanalytic terms in the k expansion of the hydrodynamic frequencies for a 
gas, and later we extended (11) these results to fluids. The general form of the 
dispersion relations obtained was 

z~(k) = ak  + bk  2 + ck 512 + ... (54) 

This result was also obtained by Pomeau, (6) who showed that there is an 
infinite number of  terms between k 5/2 and k 3 which have the general form 
k2+P~, where P~ = 1 - 2 -~, n = 1, 2 ..... Here we give in detail the method 
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that leads to (54) for a general fluid, and also obtain the terms of the general 
form as found by Pomeau, but with a different set of  coefficients. In the final 
section we will present a comparison of  our results with Pomeau's,  and in 
Section 5 we present an analysis of  the convergence of the series. 

First, we consider the secular determinant (53). Since there are no 
matrix elements U~j(k, z) connecting the labels Vl and v2 with one another 
or with T and ~, this determinant factors into a (3 x 3) determinant with 
labels (i, j )  = (T, a = +)  and two identical equations labeled with Vl and 
V2, namely 

z + k2Un~n,(k, z)  = z + k2Dn(k ,  z)  = 0 (55) 

The solution zn(k) which approaches zero as k -+ 0 is the shear mode frequency 
or relaxation rate of  two degenerate shear modes a~, 1 and a~ 2, which are given 
to lowest order in k by (17c). 

The frequencies of  the three remaining hydrodynamic modes are obtained 
by solving the (3 x 3) secular determinant, where (i, j )  = (T, ~ = + ). Since 
the off-diagonal elements are at least of  order k 2 for small z, the eigenvalues 
are determined, up to terms of  O(k3),  by solving the following equations: 

z + k 2 U r r ( k ,  z)  = z + k2DT(k ,  z)  = 0 (56) 

and the two sound mode frequencies are determined by the two equations 
(~ = _+) 

z + /kg)o~(k) + k 2 U~o(k, z) = z + icmk + k 2 U~(k, z) = 0 (57) 

To lowest order in k the corresponding heat mode and sound modes are 
given by (17). Of  course, the hydrodynamic frequencies depend neither on 
the normalization (16) nor on the particular linear combinations of  nk, gk, 
and el, used here. In fact, in Section 6 we will discuss different linear combina- 
tions of  these variables in connection with the Burnett and super-Burnett 
equations. The corresponding secular determinant reduces again to (55)-(57), 
since the corresponding matrices are related by a similarity transformation. 

We also want to point out that the generalized sound wave damping 
constant U~o(k, z) differs from the usual expression Ds = �89 - 1)Dr + �89 
by the occurrence of the new transport  coefficient 0(k, z), given in (45d). As 
we noted already, 0(k, z) vanishes as k -+  0, since in this limit it is an average 
of  an odd function of the velocities. I f  0(k, z) were regular in k and z around 
the origin, it could be expanded in a Taylor series around z = k = 0, and 
the first nonvanishing contribution would give rise to a term of O ( k  3) in 
zo(k).  I f  this were the case, the term 0(k, z) should be neglected in (44e) for 
consistency. We will show, however, that 0(k, z) contains contributions of  
O(kl12), and should therefore be kept in (44e). 
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The general form of the equations to be solved is now 

z + ikf2,,  + k2U,~(k, z) = 0 (58) 

or more specifically 

z + k2O~,(k,  z)  = O, t �9 = ~7, T (58a) 

z + i o c k  + k2U~,,O~, z) = O, cr = + (58b) 

We first observe that complex conjugation of these equations leads to 

z*  + kZD~,Ox, z*)  = 0 
(59) 

z*  - i a c k  + k 2 U _ ~ , , _ o ~ ,  z*)  = 0 

This can be seen by observing that D. and Dz in (45) satisfy D*(k, z) = 
D(k, z*), while 0*(k, z) = - 0(k, z*). 

Equation (58) will be solved by successive approximation. The solution 
of (58) to lowest order in k can be found directly by replacing U~(k, z) by 
limk~0 U**(k, z) and then solving (58) for z to lowest (called zeroth) order in 
k. The result is 

z ,~  = - i k f 2 .  - k z U,~ (60) 

or more specifically 

where 

z~, ~ = - k 2  D .  (60a) 

z,. ~ = - i a c k  - k2 D~ (60b) 

Utj = lim lim Uij(k, z) (61) 
z - ~ 0  k ~ 0  

and similar definitions for Du (/z = 7, T) and Ds. Equations (60a) and (60b) 
are the hydrodynamic frequencies obtained from the usual Navier-Stokes 
equations, as follows from (45), (46), and (51). We now assume that the 
solutions of (58a) and (58b) of interest to us, i.e., those that reduce to the 
values given by Eqs. (60a) and (60b), respectively, for small k, are unique. 
This assumption, together with Eq. (59), leads to the result that the solution 
z~,(k) of (58a) is real, while the solution zo(k)  of Eq. (58b) satisfies z~* = z_ ~. 

To determine the next approximation to z~(k), we have to know the 
behavior of U,(k, z) for small values of k and z. Consider, therefore, the 
Taylor series expansion 

d uq zi V,q U,,(k, z) = U,,(O, O) + \--b-k-lk~o,~o + \-Ss i~ .o ,~ .o  

1 [ ~2Uii ~2U~ 2 ~2U" "~ + ~ ~k 2 + .-- (62) + 2kz~---~-~z + z ---b--F-z2)~_~o,~ ~ 
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However ,  the double  expansion does not  exist. This is a consequence of  the 
long-t ime behavior  o f  the cur ren t -cur ren t  correlat ion functions ~. (0 ,  t), 
which are the inverse Laplace t ransforms of  C.(0, z) defined in (46). I t  was 
found (~'5) that  ~ ( 0 ,  t) behaves asymptot ical ly as t -3/2, which implies that  
for  small z the functions C.(0, z ) - - a n d  by virtue of  (47) also U~(0, z ) - -  
behave as 

C.(0, z) = U,~(0, z) _ C~(0, 0) + a v ' z  (63) 

where a is some constant.  Consequently,  OU./Oz for  k = z = 0 does not  
exist, and neither does the expansion (62). The  function U.(k,  z) is therefore 
singular a round  k = z = 0. Let  us investigate the implications of  these 
singularities in k = z = 0 for  the solutions of  (58). To  find the first correction 
to the lowest order  solution (60), one would be inclined to insert (63) into 
(58), and conclude that  z , (k)  = - k 2 D ~  + ak 3 and z~ = - i c w k  - k2D~ + 
bk s/2, where a and b are some constants.  However ,  this is not  correct for  
z.(k) ,  and al though it is qualitatively correct  for  z~(k), it does not  lead to the 
correct  coefficient. This is because to solve (58a) and (58b), one needs the 
behavior  of  U.(k,  z) as a function o f  bo th  k and z in regions where z ~ k 2 
or z N k and k is small, but  one does not  need the behavior  of  U.(0, z) for  
small values o f  z, as given in (63). 

We now make  the basic assumption tha t  the leading singularities o f  
U~j(k, z) in the small (k, z) regions of  interest are given by the mode-mode 
coupling theory. This theory leads to explicit expressions for  U~j(k, z) in the 
(k, z) regions o f  interest, and we will show that  they lead to a non-power  
series expansion of  the hydrodynamic  frequencies. ~ The m o d e - m o d e  coupling 
theory yields the following expression for  the par t  o f  U~j(k, z) that  contains 
the dominan t  singularities in k and z: 

U~j(k, z) = U ~ + �89 ~ U~.b(k, z) (64a) 
a ,b  

= U~j + �89 ~ 3 U~(k ,  z) (64b) 

The sum runs over all pairs o f  hydrodynamic  modes  

(a, b) = (T, ~h, "q2, ~ = + ) ;  

U ~ is the so called bare t ranspor t  coefficient; and U~.b(k, z) are the m o d e - m o d e  
integrals 

Ui]b(k, z) = f '  dq Sg-b(~, i) (65) 
(2rr)a z - z~(q) -- zb(l) 

4 It should be pointed out that the mode-mode formula applies only to the functions 
U~j(k, z), which contain the projected operator ~.,  and not to the correlation functions 
C~j(k, z), where the unprojected operator ~.  appears. For a discussion of this point see 
Ernst et al. (12) 
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The prime on the integral sign indicates that ]ql < k0, where ko is a cutoff 
wave number of the order of a reciprocal microscopic correlation length-- 
the inverse mean free path in a dilute gas, and the inverse range of the inter- 
molecular potential in a fluid. Furthermore, 1 = k - q; ~ and i are unit 
vectors; and k is always taken parallel to the x axis. The strength factor 
SgP(~], 1) is given in terms of the mode-mode amplitude A~b(~, i) as 

S~b(~, i) = A~b(~, l)(A~b(~l, l))* (66) 

with 

A'~b(~t, 1) = (J~-x, aq'~at ~) (67) 

where ak b are the hydrodynamic modes given in (17). The bare transport 
coefficient U ~ in (64a) may be eliminated from (64a) by virtue of (61), where 
we identify the Navier-Stokes transport coefficient Uij with 

U,s = U,] + �89 ~ U~b(0, 0) (68) 
cz,b 

We have used the fact that U~b(0, 0) in (65) does not depend on the order in 
which k and z approach zero. Therefore (64a) can be written in the alternative 
form (64b), which will be used in this paper; and 3U~b(k, z) is defined as 

8Utah(k, z) = U~.b(k, z) - U~b(0, 0) (69) 

The mode-mode formula is well known and frequently used in analyzing the 
singular behavior of transport coefficients near critical points. Derivations 
of this formula based on intuitive arguments have been given by Kadanoff 
and Swift, (2) Kawasaki, (3) and Ferrell. (4) Phenomenological arguments for its 
validity away from the critical point have also been published. (5) A more 
rigorous approach, valid for hard sphere gases, was given in Ref. 1. 

On the basis of the above assumption (64a)-(64b), the dispersion rela- 
tions (58) for small values of k can be written as 

z,(k) = - i ka~ ,  - k2Uu - �89 E k2 3 g ~ ( k ,  z,(k)) (70) 
a,O 

This equation is in fact a complicated set of coupled nonlinear integral 
equations for z,(k) with i = or, ~, T, where all unknown frequencies enter 
again in the denominators of the mode-mode integrals. We have not been 
able to find a solution of these equations in closed form, but we present a 
scheme for successive approximations, valid for small values of k. 

In Appendix B we analyze the mode-mode integrals U~b(k, z) and we 
find that the dominant contributions come either from two oppositely 
traveling sound modes, i.e., Ug.-~ z) with a = +, or from two diffusive 
modes, i.e., 3U~"(k, z) with (A,/~) = (T, ~ ,  ~2)- The first approximation to 
the solution of (70) is now obtained by replacing all hydrodynamic frequencies 
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in the denominator of (65) by their zeroth approximation z~ ~ given in (60). 
In addition, we replace the argument z~(k) of  ~U~ b by z~~ From Eqs. 
(B.2), (B.8), and (B.10)-(B.14) of  Appendix B we have now in zeroth 
approximation 

~5~. - ~ z, ~ = f d~ S~- ~ - i]) - 4~- 47r(2D~) 8/2 (z*~ + krckq~)Z/2 + O(k) (71a) 

~. ~ d~ S~u(~, - ~ )  (z o)1/2 O(k) (71b) 3 Ui, (k, z~ ~ = - 4~r 4~r(2D~) 3/2 + 

Here terms of  O(k) have been neglected, d~ is a solid angle, with ~x = ~.k. 
We have further introduced 

Da, = �89 + Du) (72) 

Consider first (70) for the diffusive modes (/~ = ~, T), where zu ~ = -k2Du.  
In this case the term z, ~ in (71a) should be neglected compared to iackq~ for 
consistency, whereas the contributions from two diffusive modes (71b) 
should be neglected completely, since the first term in (71b) is as unimportant 
as the neglected terms of  O(k). We then find from (70) and (71) the hydro- 
dynamic frequency z~ ~ of the diffusive modes in first approximation, 

1 2 ~  f dot S ~ ( ~ t , - ~  (icrck~x)l/2 (73) z, ~ = - k 2 D ,  + ~ k 4~r 4rr(2D,) *~ 

From the explicit expressions for the function SO], -~]), calculated in (C.4) 
and (C.6) of Appendix C, one sees that S~y~(~], - ~  is a real, even function 
Of Ox, so that we can replace (i~rO~) ~z2 in (73) by 2-~/~1~]~/2. This yields the 
first approximation to the frequency of the diffusive modes 

zu ~ = -k2Du + k~/2A,,(1) (74) 

with 

1 a/'c M~(1) (75) 
Au(1) 4rrV'2 /3p (2Ds) 3'2 

and we have introduced for later convenience the quantity M ~s ( -~ uu~n], where 
n = 1 in (75), as 

M~u(n) = -~ [3p ~ S~-"(~, -~lc~xle- (76) 

with 

P ,  = 1 - 2 - "  (77) 

so that P1 = 1/2. The superscripts (ss) refer to the sound modes. The integrals 
in (76) are carried out in Eqs. (C.20)-(C.21) of  Appendix C. 
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Consider now the frequency of the sound mode in (70). In this case z~ ~ 
in the mode-mode integrals (71) should be taken as - lack by virtue of (60b), 
and we obtain 

1 k2 

~ f S~o (q , - ( l )  (1 - a#O~:)l'2(-iack) 1`2 (78) 1 kS d( l ~'-~ ^ 
+ 2 &r 4rr(2D~) ~/2 

Using Eqs. (C.11)-(C.14) of Appendix C, one sees that S ~  does not depend 
on a, and that 

a ' - a "  ^ 

So~ (q, -r = (tiP)- ZM(aa'~=) (79) 

where M(x) ,  given in (C.14), is a real, positive function of x. This gives us 
the first approximation for the sound mode frequency 

z,, ~ = - i a c k  - k2D~ + kS~2[A~(1) - ,~AJl)] (80) 

Here 

M~(1) (81) 
AJ l )  = X~(1) = 4~V~ tip ,~o. (2D~) 3/2 

where the sum runs over the four terms (ab)  = (ss), (v, V), (~IT), and (TT).  
ab  Again we introduce for later convenience the quantities Mg.(n), where n = 1 

in (81), as 

1 fda M ~ ( n )  = Mg~(O) = ~ tip ~ .q'*',(a ,.,=1.: ~ - ~ )  (82) 

M::(n)  = M~:(O)= tip ~ f d~l ,7,T^ ,=z.2 ~ Sa, (q, - ~  (83) 

1 fda Mr~r~(n) = Mrs,(O) = -~ tip - ~  So,~ (q, - ~ (84) 

M ~ ( n )  = -~ tip , ~ S ~  (q, - ~ ( 1  - ee '~x)"  (85a) 

= - dx M(x)(1 - x)P- (85b) 
2 _~ 

In (85a)-(85b) we have used (79). The functions S~o(~I, - ~ )  are calculated in 
Appendix C, where the angular integrations in (82)-(85) are carried out. At 
this point one can_verify that 0(k, z), defined by Eq. (45d), is proportional to 
k */9'. This can be seen by applying the mode-mode coupling formula to 
(45d) and considering the contribution from antiparallel sound modes, using 
the method outlined in Appendix B for treating the mode-mode integrals. 
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This procedure leads directly to the result that 0(k, z) ~ k 112 for small k, 
and in fact shows that 0(k, z) forms part of  the contribution to the coefficient 
of k 512 in Eq. (80). 

So far we have obtained the first approximation (74) and (80) for the 
hydrodynamic frequencies, and explicit expressions for the coefficients are 
given in (75), (81), (C.20), (C.21), (C.24), and Table I of Appendix C. These 
results were given in a previous publication, al) where a printing error occurs 
in the expression for M~(1) (indicated there by M~); this has been corrected 
in (C.24). 

In the next part of this section we discuss the solutions of (70) obtained 
by successive higher approximations. The approximation scheme can be 
simply formulated with the results of Appendix B. In this appendix we have 
made the following ansatz for the hydrodynamic frequencies appearing in 
(65): 

z~(k) = - k 2 D .  + A .k  2+v 
(86) 

z,,(k) = - k r c k  - k2Ds + (As - i~r-As)k 2+P 

and we calculated the mode-mode integral (65) with the result 

~U'~-~(k'z'(k)) = - f  dq S~-~(r -q) ( 8~'D~ 

As P + 3  } 
+ Ds 2 cos �89 ~" + ~)I2 + O(k) (87a) 

z*(1")) = - f  dq s u(q' -q) { 8rrD~. 

Aa. P +  3 ~(p+ ) 
+ D a ~ 2 c o s ~ r P  2 1)/2 + O(k) (87b) 

where Aa. = �89 a + Au) and 

~ = [z~(k) + iaek~x]/2Ds, ~2 = z~(k)/2Da. (88) 

We consider first (70) for the sound mode frequency where z~(k) = z~(k). 
Here we see that the dispersion relations (86), used as input to calculate 
3U~'-~'(k. z(k)) and ~Ua"(k, z~(k)), produce in (87) a term of  O(k ~/2) and 
O(k(P+ ~)/2). Exactly the same thing happens for the frequencies of the diffusive 
modes z~(k) = z.(k) with /x = ~, T, where only 3U ~-~(k, zo(k)) has to be 
considered for solving (70), since 3UX"(k, z.(k)) is of O(k). 

Therefore, if we had taken P = �89 in (86) we would have found terms of 
O(k 1/2) and O(k 3/~) in (87). If we had used this result again as input, we would 
have obtained from (87) terms of O(kZ/2), O(k*!4), and O(U/8). The general 
structure is therefore that a term of O(kP.) with P .  = 1 - 2 -"  in the disper- 
sion relation (86) produces through iteration of the mode-mode formula a 
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new term of O(k(P. +1>/2) = O(kP.+l). In order to make the whole scheme 
self-consistent we write the dispersion relations as 

zu(k ) = - D u k  2 + ~ Au(n)k2+F- (89a) 
~ = 1  

zo(k) = -i(Tck - nsk  2 + ~ [As(n) - iaA~(n)]k ~+P. (89b) 
n = l  

with P ,  = 1 - 2 - L  The approximation scheme outlined above will auto- 
matically lead to recursion relations between the coefficients A~(n), which we 
derive now. We calculate z~(k) from (70) by means of the mode-mode inte- 
grals (87), in which we use (89) as input. The analysis of  the mode-mode 
integrals of  Appendix B still applies, since the exponents P ,  satisfy the require- 
ment �89 ~< P ,  < 1 (which is necessary in Appendix B), and we replace A and 
P in (86) by A(n) and P , ,  respectively, and sum over n = l, 2,.... For the 
diffusive modes (/~ = V, T) we obtain from (87)-(89) in this way 

l k2 ~ f d~t $7,~-~(~, _--~) z.(k) = - D ~ k  2 + ~ 4rr -4-g-D~ 2 

x ~ A~(n) Pl-@O [iack~x~e"+t 
~=o cos~Trr. \ 2D~ ] (90) 

In the summation over n we have included the term obtained in (73) by 
putting n = 0 and defining 

Am(0) = ~D~, a = s, ~7, T (91) 

From the relation iP. = cos �89 + i sin �89 and from arguments similar 
to those used following (73), we deduce 

1 
A (,,~rs~t.~ cos ~rP .  + ~ k2 (92) zu = - D. k2 + ~,  -sv',~u vv  - ~  +e"+t 

I'L= 0 

with 

Pn+2 [ c ~P.+~ ss 
L~S(n) = 4rrflpDs2 t~-~J  M~,(n + 1) (93) 

where M~(n)  is defined in (76) and calculated in (C.19)-(C.21). For the 
sound mode frequency we obtain in a similar way 

( -  i~k)P. +1 (94) 
= - + cos  �89 (ab)  n = O  

where (ab) = (ss), (~TV), (•T), and (TT), and 

Aab(n ) = �89 + Ab(n)], D~  = �89 + D0) (95) 

with a = (s, V, T). Furthermore, 

P~+2 / c \e .+l  ~o 
L~~ 4~-fi--pD~o ~ 2 - ~ )  Mg~(n + 1) (96) 
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where M~(n) and M~"~(n) are defined in (82)-(85) and calculated in Appendix 
C, starting from (C.21) on. 

By comparing the expressions for z~(k) in (89), (92), and (94), and equat- 
ing (the real and imaginary parts of) the coefficients of equal powers of k, 
one obtains the recursion relations for n >/ 0: 

8,(n + 1) = L~(n) ~(n) (97a) 

3s(n + 1 ) =  ~ L~b(n)3sb(n) (97b) 
<sb) 

where we have introduced 

As(n) = 3s(n) cos �89 a = s, n, T 
(98) 

Ks(n) = ~(n) sin �89 = 2xs(n) tan �89 

and 

8sb(n) = �89 + ab(n)] (99) 

and as(0) = ZD 3 s, as follows from (98) and (91). 
These recursion relations can be solved successively. It follows directly 

that all As(n) are positive, since L(n) is positive. For n = 0, Eq. (97) yields 
(74) and (80), which we already obtained by explicit calculation. Using the 
expressions for the coefficients M(n) calculated in Appendix C, we can 
directly obtain explicit expressions for L(n) and As(n). It is also interesting to 
observe that z~(k) - ~os(-i(~k) is related to a real function o)s(k), defined as 

cos(x) = ex + Dsx 2 - ~ 3,(n)x2+e, (100) 

and similarly z,(k) = Re oJ,(ik), where 

w.(x)  = D.x 2 - ~ 8.(n)x2+P,, (101) 

The general structure of the recursion relations (97) was obtained by 
Pomeau. (6) We disagree, however, with his results for the coefficients L(n) for 
several reasons, to be discussed in the last section. 

4. B R A N C H  P O I N T S  OF U~j(k,z) 

In the previous section we discussed the contribution to (ak~(t)) from 
poles in the integrand on the right-hand side of  Eq. (52), i.e., from zeros of 
the hydrodynamic matrix. In addition to the poles, the integrand has branch 
point singularities which must be taken into account when inverting the 
Laplace transform. (7) To see that there are branch points in U~j(k, z), consider 
Eq. (B.10) of Appendix B. Inspection of  U~ z) given by this equation 
shows that there are branch points in the complex z plane at the values 
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z = +_ ick,  and the presence of these branch points requires that cuts be made 
in the z plane along the lines - o o  <<. z + ick <<. O. Since the long-time 
behavior of ( a d ( t ) )  may also be determined by the branch point singularities, 
we will consider whether the contributions from the branch points are of the 
same order of magnitude as those coming from the poles. 

In the previous section we found that there are poles in the hydro- 
dynamic matrix in two regions in the z plane, (a) z ~ + ikc and (b) z ,~ - D k  2, 
where D is an appropriate diffusivity. Connected to these poles there are two 
time scales, (a) rs(k), the period of oscillation of a sound wave of wave 
number k, where %(k) ~ (ck ) -1 ,  and (b) "ra(k), the relaxation time for the 
decay of a sound, shear, or thermal mode of wave number k, where ra(k) 
( D k  2)- 1. Since r~(k) << ra(k) for small k, there is practically no damping of a 
sound, shear, or thermal mode on the time scale of %(k). To estimate the 
relative sizes of the contributions to (au*(t))  from the poles and the branch 
point singularities, we must determine (a) whether there are any branch points 
in U(k, z) in the same regions of the z plane as hydrodynamic poles, (b) the 
relative order of the contributions to {aki ( t ) )  from each type of singularity, 
if there are any, and (c) whether any contribution from branch points are 
more important than those from poles. Therefore we will consider the analytic 
properties of U(k, z) as a function of z for fixed but small k. 

First we consider question (a), and we will be interested then in locating 
any branch points in U(k, z) that may lie in one of three regions of the z plane 

(i) z .,~ O(k)  

(ii) z .., O ( k  2) (102) 
(iii) z << O ( k  2) 

Region (i) will determine branch point contributions to (ak*(t)) on the time 
scale of a sound oscillation rs(k); region (ii), contributions on the time scale 
of a damping time ra(k);  and region (iii), contributions on any scale which is 
longer than %(k) .  

We begin by noting that there are four distinct types of contributions to 
U,~(k, z) coming from combinations of two hydrodynamic modes. We have 
denoted these by 3U~-~(k, z), 3Ud-"(k, z), 3U~.Z(k, z), and 3U~(k, z), coming 
from antiparallel sound modes, two diffusive modes, a diffusive and a sound 
mode, and parallel sound modes, respectively. We consider first the quantity 
8U~. -~, which is given, for small k and z, by Eq. (B.10) of Appendix B, with 
the dispersion relations (89), 

8UTj_~(k, z) l 

+ ) n=l" D~ cos �89 ~Pn+l + O(O) (103) 
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Here 0 = max(z, k), Pn = 1 - 2 -n, and ~ = (z + i a c k x ) / 2 D , ,  where x = 
k.~i = ~x. Using the fact that S(~, - ~ )  is only a polynomial in x [see Eqs. 
(C.4)-(C.17)], we conclude that ~Ufj-~ z) contains terms proportional to 
(z + iack) 112 and (z +_ iaek)F,+l, each multiplied by a polynomial in (z/k) .  
Consequently, 3Ufj-~(k, z) has branch points in the complex z plane at z = 
+_ick. Having located branch points in 3U~-~ z) for z ~_ O(k) ,  we expect 

that these branch points will contribute to (ak*(t))  for times of the order of  
%(k). The correction term of O(0) in (103) is of  O(k) ,  since on the time scales 
of  interest z <<. O(k) ,  so that 0 = max(z, k) = k, and for small k it is less 
important than the terms of O ( k  1/2) and O(kV,+l) which we keep. One can 
also see from Eq. (102) that there are no branch points for z <<. O(k2),  since 
for z of  this order the expression (t03) is analytic in z. Consequently, in 
order to carry out the contour integral in Eq. (52), a consideration of  ~ Ugj -~ 
requires that cuts be taken along two semiinfinite lines parallel to the negative 
part  of  the real axis, given by - ~  <~ z +_ ick  <~ O. 

We now give an example of  the type of  branch points that appear in the 
contribution from two diffusive modes, U~U(k, z). Consider the quantity 
U~{(k, z) which, according to (65), is given by 

so~ (q, i) (104) ~'r 1 ( ' d q  r r  ^ 
u ~  (k, z) = g j (2~) ~ z + D~(q ~ + / ~) 

where ~.r ^ Soo (q, D is independent of  Q and L which follows from (C.13) and 
(C. 18). Then 

T~ 1 f dq [z + D~(q  2 + /2)]-z U~(k, z) : ~ S ~  

TT 1Drk2)l /2  
T T  : vo~ (o, o) - s ~  (z + 8~(2D~)a,2 + O(k)  (105) 

From Eq. (105) we see that for z ~ O(k) ,  there is a branch point singularity 
of  the form ~/z in rT 8 Uoo (k, z), and one must cut the z plane along the line 
- m  ~< z ~< 0. For z ~ O(k2),  there is a branch point in the z plane at z = 
- � 8 9  2 and the cut extends from - ~  <~ z <~ - � 8 9  2. Finally, for z < 
O ( k  2) the function r r  3Uo,(k, z) is analytic in z. The analytic form of 8 Ui~y(k, z) 
for diffusive mode contributions is, in general, more complicated than that 
given by Eq. (105). However, it can be shown by similar methods that 
8 Ua"(k, z) generally has a ~/z singularity for z = O(k) ,  and for z = O(k  2) 
there is a branch point at z = - [ D a D , / ( D a  + Du)]k 2 and a cut extending 
from - ~  <<. z <~ - [DaD~/(Da + Du)]k 2, while for z < O(k2),  ~ U ~ ( k ,  z) is 
analytic in z. 

Although we will not give the details here, an examination of ~U~"(k, z) 
and ~U~~ z) for branch points can be made along similar lines. The 
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combinations of hydrodynamic modes represented by ()~, or) and (or, or) give 
less singular contributions to U(k, z) than those coming from antiparallel 
sound modes, or from two diffusive modes. For example, for z ~ O(k) and 
for z <<. O(k2), the function ~U~(k, z) has a singularity of the form z 2 In z. 
In the following discussion we will see that singularities of these types are not 
as important for (aki(t)) as those contained in 3U ~ z) or 3U~"(k, z). 

Next we address ourselves to questions (b) and (c). In order to discuss 
(ak~(t)) for long times, we consider Eq. (52). To the order in k in which we 
have been consistent, the hydrodynamic matrix {zl + ik~(k) + k2U(k, z)} 
is diagonal, so that we can write 

( a k ' ( t ) )  = fv dz e ~t (ak*(0)) 
2~ri z + ikf2u(k ) + k2U,(k, z) + O(k 3) (106) 

where the contour IF' is parallel to the imaginary axis and to the right of all 
poles and singularities of the integrand in (106). Consequently we may 
consider sound and diffusive modes separately. In general we may write a 
hydrodynamic mode (ak*(t)) as a sum of two terms 

(ak*(t)) = (ak'(t))p + (ak~(t))~ (107) 

where (ak~(t))p represents the contributions from the hydrodynamic poles, 
while (ak~(t))c represents contributions from the cuts in the z plane. The terms 
(ak~(t))p and (ak~(t))o are given by expressions similar to (106) in which the 
contour F is replaced by contours I'~ and I7~, respectively; the I'p are counter- 
clockwise contours around the poles of the integrand in (106), and the F~ are 
counterclockwise contours around the cuts in the z plane. 

We consider first a diffusive mode, (akn(t)) say, starting with the contri- 
butions from the poles. The poles are determined by Eq. (58), and are 
explicitly given by Eq. (89a). Now (ak'(t))p is given by 

(ak'(t))p = e x p [ - t f  Dnk2 - ~=1 ~' A'(n)k2+P" + O(ka))] (akn(O)) (108) 

In order to be consistent with the fact that we have neglected terms of O(k a) 
in the hydrodynamic poles, we expand (108) and keep only the first two terms. 
That is, 

(ak'(t))p = [exp(-k2D, t)](l + k2t.=l ~ A"(n)kP" + O[k(k2t)]t (109) 

Consequently, on the scale of the damping time ~-a(k) = (D~k 2)- 1, the hydro- 
dynamic poles give contributions of order [t/-ra(k)]ke.. We therefore infer that 
our results are only meaningful for the case where t/ra(k) is finite and where 
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k is small. I f  now we look at the contributions to (ak'(t)) f rom the cuts, we 
write 

(ak(t)~c_c ~ dze~ f l k  2 )-1 (ak'(O)) ~rro 2rri z + k2D, + ~ ~a~ 3U~(k , z )  ( l l0a)  

f dz e zt . 
= ~ r o ~  {z + Dnk2}-i 

1 k2 & eZt ~ab 3U~n(k, z) 
- ~ o 2,~i ( z  + D # )  ~ + '" (ll0b) 

Here we have used Eq. (64b) for U,n~, z), and to be consistent with the 
terms that have been neglected, we expand the denominator in ( l l0a)  to 
obtain (110b). The first term in (110b) gives a vanishing contribution, since 
the integrand does not have any branch points. F rom the discussion of  Eqs. 
(103)-(105) it follows that, on the scale of  ra(k), the only important  contribu- 
tions to (ak'(t))~ come from combinations of  diffusive modes. 

One finds that the contribution to (akn(t))c coming from the cut in 
3 UriC(k, z) is of  the order ofkf[~-a(k)/t ] e x p ( -  �89 wheref(x)  is a bounded 
function of  x for all values of  x, and it depends on the detailed nature of  the 
branch point. Consequently, for finite t/ra(k) and k small, the branch points 
make a contribution which is of  the same order as those we have neglected 
in (109). However, to discuss the diffusive modes on the time scale of  a sound 
oscillation, one should take the contribution from the cuts into account, as 
follows from (103) and (105), since they are of  the same importance as those 
of  the poles. 

A similar analysis can be made of (al, i(t))p and (ak~(t))~ for the other 
modes. In each case one finds that for times of  the order of  ~-a(k) the dominant  
contribution comes from the poles, and that for times of order ~-gk) the 
contribution from the cuts must be included. A more detailed discussion of 
these points as they apply to the special case of  self-diffusion will be given 
elsewhere. (~3) 

5. L O N G - T I M E  TAILS A N D  C O N V E R G E N C E  CRITERIA 

In this section we will discuss the long-time behavior of  the time correla- 
tion functions, which are a direct consequence of the dispersion relations 
obtained in Section 3. We will further discuss the convergence of  several 
expansions obtained here and in Section 3. 

The mode-mode  formula, together with the Navier-Stokes values of  the 
hydrodynamic frequencies, yields the well-known t-3/2 tails of  the correlation 
functions, as shown in Ref. 5. We will show here that the higher corrections 
of  O(k 2+v.) (with n >/ 1 and P ,  = 1 - 2-" )  to the dispersion relations (89) 
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give rise to higher corrections to the t -3/2 tails which are of O(t-2P,+0 with 
n > ~ l .  

The time correlation functions ~j(0, t) are the inverse Laplace trans- 
forms of C~(0, z), defined in (46), and Qj(0, z) = U~j(O, z) according to (47). 
It follows then from Eq. (64b) that for small values of z 

c. (o ,  z) = u .  + �89 z) (lll) 
a,b  

By applying the results (B.7)-(B.11) of Appendix B, together with the full 
dispersion relations (89), one finds 

M~.b(O) ~, ( z 'tP- +~ 
C,j(O, z) = U,j - <~> 4=~b ~'--0 3=b(n)P, + 2~ ~---~ ] (112) 

where the first sum runs over the terms <ab) = (ss), (7, 7)' (7, T), and (T, T), 
we have used (98) and (99), and we introduced 

M~](0) = ~ tip ~ S~j (q, - 

M~y(O) = ~/3p ~ S,j (q, - ~ )  
m, ,2  (113) 

[" d q  rlmT ^ 
M~[(O) = 3p ~,2 J ~ S,j (q, - +  

1 rd~l r r ^  
M .r(O) = y /3p J S .  (q, -a3 

where (i, j ) =  (Tin, a, l, T). The quantities Mbb(n), defined in Section 3, 
ab coincide with these definitions for the case n = 0. The coefficients Mzr(O), 

and therefore also C~r(0, z), vanish indentically, since the strength factors 
a b  ^ S zr(q, - ~  are either identically zero or odd functions in the angular variables 

[see (C.10)]. Equation (44) shows that the remaining off-diagonal correlation 
functions Co_J0, z) and C~r(0, z) are linear combinations of Crr(0, z) and 
C,(0, z). We can therefore restrict ourselves to diagonal correlation functions 

M~ (0), which are listed C~(0, z). Consequently, we only need the quantities ~ 
in Table I of Appendix C. 

We now use the behavior of C~(0, z) for small z to infer the behavior of 
its inverse Laplace transform C,(0, t). To do this, we note that if a function 
f ( t )  behaves l ikef(t)  ~ t -", with ~ > 1 for large t, then its Laplace transform 
f(z) behaves for small z as 

q./.Z/g - 1 

f(z) ~, f(O) + P(t0 sin ~-/~ (114) 
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where F(/~) is the gamma function. Therefore the terms zP.+l in expression 
(112) for C.(0, z) yield terms ~t-(l+P.+l ) in C~(0, t), so that 

~, M~(0) 
C,(0, t) z z_., ~or8~ D t~3/2 

(ab> HHk ab ) 

.=1 D~b F(3/2) \2-b-j~t! ) (115) 

where the relations F(�89 = ~v/rr and A~b(0) = 2D~d3 have been used. We 
notice that all terms in the series are positive. Here again i = (V, ~, I, T). The 
first term inside the curly brackets, which could have been included in the 
sum over n starting at n = 0, yields the well-known t -3~2 tails. We further 
observe that the relative corrections to the t-w2 contribution of the mode 
pair (ab) do not depend on the correlation function considered, but only on 
the mode pair involved. 

Another correlation function of physical interest which is not a particular 
case of Eq. (115) is the time correlation function Cr162 t) for the bulk viscosity 

= pDz(O, 0) - 3~q(0, 0). The bulk viscosity is given in terms of the correla- 
tion function C~d0, z) as ~ = l im~0 pCcdO, z). This correlation function can, 
of course, be introduced as 

C~r z) = Cu(O, z) - 4C~,(0, z) (116) 

and evaluated accordingly. Due to symmetry properties of isotropic tensors, 
Cr162 z) can also be expressed in the more familiar form 

Cr162 z) = 1(flip) ~" (~o~, ff~'~0~B) (117) 
a,B 

where (a, fi) = (x, y, z) label Cartesian components, and ~o~ is defined in 
(43b). Of course, the mode-mode integrals (64)-(67) apply also to this 
correlation function, and according to (67) and (32c) we have 

A?(~,-r =(~/p)~'~ ~ (~o~,~.~ 

= � 8 9  ~ A~(fl,-C]) (118) 
X = X , B , Z  

Explicit expressions for A~ b are given in (A.21)-(A.24), and the corresponding 
strength factors, defined in (66), are calculated in (C.7)-(C.9). 

The previous discussion allows us to extend Eqs. (112) and (113) to 
include the correlation function C~d0, z). By comparing (112) with (89)-(96), 
we notice that in (112) all pairs of modes are involved [some of the coefficients 
M~b(0) may of course still vanish], whereas in (89)-(96) this is only the case 
for the sound mode frequency while z;(k) involves only two opposite sound 
modes. This and other small differences are due to the fact that the mode- 
mode integrals are evaluated in different regions of k and z in each case. 
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In the second part of this section we investigate briefly the convergence 
of the series considered in Section 3 and in this section, using the convergence 
criterion that lim.o| < 1, where t. is the nth term in any of these 
series. Since the convergence condition takes two different forms, depending 
on the series considered, we divide the series into two groups: (i) series 
(89a) for z.(k), the real part of series (89b) for zo(k), and series (115) for 
~j(0, t), and (ii) the imaginary part of series (89b) for z.(k), series (100) and 
(101) for o~(x) and oJ.(x), respectively, and series (112) for C~j(0, z). 

The convergence criterion imposes in case (i) the condition 

lim a~(n + 1) .-~oo 3~(n) < 2 (119a) 

and in case (ii) 

lim 3s(n + 1) < 1 (119b) 

To obtain these equations, we have used Eqs. (97)-(99) and the fact that 
L~S(n), defined in (93), approaches a constant, since it depends only on n 
through P.  = 1 - 2-". 

To see whether (119a) and (119b) are indeed satisfied, we have to solve 
the recursion relations (97) for large values of n. For sufficiently large n, say 
n /> M, the coefficients L~S(n) and L~~ in (97) approach their asymptotic 
values LT,~(oo) and L~b(oo) arbitrarily closely, since they depend on n only 
through P. ,  which can be checked from (93), (96), (76), and (82)-(85). For 
n /> M it is sufficient to replace the coefficients L(n) in (97) by constants, and 
if we now eliminate 3.(n) from (97a)-(97b), the recursion relation reduces to 
a second-order difference equation 

3~(n + 2) - A 3s(n + 1) - B 3~(n) = 0 (120) 

where A and B are positive quantities, defined as 

A = LgS(ov) (121a) 

a ab ~ L ~ S ( ~ ) ]  (121b) B = + 
<a0> 

The prime on the summation sign indicates that the sum runs only over the 
terms (ab) = (~), (~?T), and (TT). 

The solution of (120) is given by 

8~(n) = ~x+ ~ + /3x_ ~ (122) 

where 

x .  = �89 + (A 2 + 4B) z/21 (123) 
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Here a and p are constants. Since the positive root x+ has a larger absolute 
value than x_ ,  we see that 

lim 3~(n + 1) 
,-~oo 8s(n) = x+ (124) 

and the convergence conditions (119a) and (119b) require that x+ be smaller 
than 1 or 2, respectively. By using (123) we have for the case (i) the convergence 
condition 

A + B < 1 (125) 

and for case (ii) 

2A § B < 4 (126) 

The coefficients A and B are expressed in terms of  La~(oo), which are them- 
selves proportional to M~b(oo). These quantities are calculated explicitly in 
Appendix C, and are found as functions of  transport coefficients and thermo- 
dynamic quantities, which can be measured experimentally. We have not 
made an attempt to analyze the available experimental data on fluids to 
check whether the convergence conditions are satisfied. However, for a dilute 
gas it is very simple to verify that (125) and (126) are satisfied. Inspection of  
the expressions (93) and (96) shows that all Lab(oo) are proportional to the 
square of the reduced density n* = na ~, where a is a measure of  the range 
of the intermolecular forces. Hence (121) yields A ~ (n*) 2 and B ,-~ (n*) 4. 
In fact, using ideal gas values for all thermodynamic quantities, and estimat- 
ing the viscosity ~ and the thermal conductivity ,~ by the first Enskog approx- 
imations for the transport coefficients of  hard spheres with diameter a, i.e., 

= ~ ; '~ = ~- -~ n (127) 

we find that (125)-(126) reduce to 0.36(n*) 2 + O(n .3) < 1 or 2, and this 
condition is satisfied for sufficiently small reduced densities. For  the special 
case of hard spheres it seems possible to discuss the convergence of  these 
series by calculating the quantities A and B in (121) by using the virial 
expressions for the equation of state and for the other thermodynamic 
quantities and by using Enskog's theory to estimate the transport coefficients 
for a hard sphere gas. 

6. B U R N E T T  A N D  S U P E R - B U R N E T T  E Q U A T I O N S  

In Section 3, and in Ref. 1, we showed that the hydrodynamic fre- 
quencies do not have analytic expansions in powers of k, but that terms 
proportional to k 5/2, k 11/4, etc. appear. This result has been established by 
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assuming either the validity of the mode-mode formula, or, for a moderately 
dense gas, that the ring and repeated ring events give the dominant contribu- 
tions. An important implication of this result is the observation that the 
linearized Burnett and super-Burnett corrections to the Navier-Stokes hydro- 
dynamic equations do not properly describe the hydrodynamic behavior of the 
system, since the Burnett and super-Burnett corrections, if they exist, are at 
least of O(k a) and O(k4), respectively. One might suppose, therefore, that if 
one assumed ab initio that the hydrodynamic equation has a power series 
expression in k, some property of the Burnett and super-Burnett terms that 
result would indicate the presence of the k 5/2 term. In this section we show 
that this is indeed the case, and that the property referred to above is that the 
resulting BurneR, super-Burnett ..... transport coefficients are divergent. 

We begin by considering the generalized hydrodynamic equations de- 
scribed in Section 2, in particular (30). We expect that the hydrodynamic 
description of the system will obtain for times long compared to some 
microscopic relaxation time, and we consider the long-time behavior of the 
generalized hydrodynamic equations. In such a case we neglect the term in 
(30) that involves the perpendicular part of the initial distribution function, 
P• since this term is expected to decay rapidly compared to the terms 
which we retain, and we have 

{z 8~j + ikY~ij(k) + k 2 U,j(k, z ) } (a~)  = ( a k * ( 0 ) )  
J 

(128) 

It is convenient to transform (128) to the customary hydrodynamic variables: 
the density (nk( t ) ) ,  the temperature (Tl,(t)),  and the local velocity (uk~(t))  
(a = x, y, z), where we have introduced the new microscopic functions 

r k ( r ) = / a r ] e k ( r ) + ( ~  
\ 0e ] .  -~n ~ nk(F) 

uk~(r) = ~ g~(P), ~ = x, y, z 
(129) 

Since (nk, Tk) = 0, as can be readily verified with the help of Appendix A, 
it follows that the functions nk, Tk, and uk (a = x, y, z) form an orthogonal 
set of functions with respect to the inner product (13), and they can readily 
be normalized. Therefore the transformation of (128) to density, temperature, 
and local velocity is an orthogonal transformation of the old basis vectors in 
(17) to the new ones 8k ~ (i = I, 2, 3, 4, 5) with 

d~, ~ = f r ~ n , , ;  ~ ?  = f ; ~ T ~  
(130) 

~ a = f ~ auk~; gtk 4 = f g ~uku; Ok s = f Y luk~ 
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The normalization constants are chosen so that 

(~,,~, ~ 9  = ~J 

which yields 

A ~ = (n,,, n~) = n~,~/~ 

f2 2 = (rk, rk) = r/flnCv 

f32 = f 2  =.f52 = (uk~, uk~) = l/tip 

(131) 

(132) 

Here Cv is the specific heat per particle at constant volume, and nKT = 
(On/OP)r. The vector k is taken parallel to the x axis. Equation (132) can be 
verified with the help of Appendix A. 

In the new representation (130), the hydrodynamic equations (128) read 

{z 3~ + ikfi,jOx) + k20{j(k, z)}<O~> = <fik{(O)> (133) 
J 

Instead of carrying out the orthogonal transformation to obtain ~,j and U{j 
from f~{j and U{j, respectively, it is simpler to evaluate ~,j and G~j directly 
from Eqs. (24) and (25), in which the ak { are replaced by 5k ~. The result is 

~13 = ~al = c~ '-1/2, ~2a = ~32 = c[(~' -- 1)/),] lm 
(134) 

~ = 0 in all other cases 

and 

Uz2(k, z) = (nCv)-1A(k, z) 

Ua3(k, z) = Dz(k, z) 

u~wx, z) = U55(k, z) -- p - b ( k ,  z) 

U2a(k, z) = U32(k, z) -- (pnTCv)- i/2OOx, z) 

U~j(k, z) = 0 in all other cases 

(135) 

The symbols are defined in (43)-(45). Before proceeding, we want to remark 
that the hydrodynamic equation (133) could have been used in Section 2 just 
as well as those given by (128). The roots of the secular equations of (128) 
and (133) are the same, and are determined by (56)-(58). The advantage of the 
representation (17) is that it diagonalizes the matrix gt(k) to lowest order in k. 

Equation (133) represents the Fourier-Laplace transforms of  the usual 
hydrodynamic equations, which we will write out explicitly in terms of the 
variables <nk(t)>, <Tk(t)>, and (%(0) -  This can be done most easily by 
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replacing 8k j by fssk j, ~ j  by f f f f  1 fiij, and U~s by f f f [  1U~s, and inverting the 
Laplace transforms, 

at(nk( t ) ) = -- ikn(ukx(  t ) ) 

8 t (Tk ( t ) )  = - i k a - ~ ( y -  1)(uk=(t)) - ik (nCv)-~(qk~( t ) )  (136) 

~t(ukc~(t)) = - i k o - l ( P k x e ( t ) ) ,  ~x = x,  y, z 

We have made the following identifications for the longitudinal component 
of the heat current (ql,=(t)) and the longitudinal components of the pressure 
tensor (Pkx~(t)): 

s (qkx ( t ) )  = - i k  dr  i(k, r)(Tk(t -- r)) 

f2 - i k  dr  O(k, r)(Uk~(t -- r)) (137a) 

f2 ( e k , x ( t ) )  = ( e k ( t ) )  -- ik dr O/3,(k, r)(uk~(t  -- r ) )  

ik f* dr  0(k, r ) (Tk( t  -- r))  (137b) 
T J0 

J2 (Pkxu)  = -- ik dr  "~(k, ~')(uku(t - r ) )  (137c) 

and the local pressure (Pk(t)) is found here as 

8P Z t ( P k ( t ) )  = ( ~ ) r ( n k ( t ) )  + (-~-~) ~ k ( ) )  (138) 

where we have used the thermodynamic relations 

l ( S P )  [ ) , - -  1\ ~'2 I ( O P )  
= �9 c t - - - - ~  ) f a f ; l =  (139) 

In general, if(t) indicates the inverse Laplace transform of f(z). In the limit 
of large t and small k, (137a)-(137c) reduce to the usual linear relations 
between the fluxes and the gradients, since the function O(k, t)  vanishes in 
this limit, as we have seen in Section 2, and the time variation over the time 
of the hydrodynamic variables (Tk( t  -- r ) )  and ( U k ( t  - -  " r ) )  may be neglected, 
since it is of  higher order in k, as follows from (136). Finally, the time integrals 
over (0, co) of ~(0, ~-), /31(0, r), and 4(0, r) are the time correlation function 
expressions for the Navier-Stokes transport coefficients A, Dt, and V, respec- 
tively. The quantity O(k, r) is a transport coefficient which couples the heat 
flow and the longitudinal momentum current, and does not appear in the 
linearized Navier-Stokes equations. 

We may obtain the hydrodynamic equations to order k 3 by making a 
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k-expansion of the quantities ~(k, t), 0(k, t), /~z(k, t), and ~(k, t), and a 
r-expansion of (Tk ( t  -- r))  and (uk(t - ~-)). The latter yields 

(Tk ( t  - - z ) )  = ( T k ( t ) )  -- r Ot(Tk(t))  + "" 

= ( T k ( t ) )  + ik'r y - 1 (uk~( t ) )  + O(k  2) (140a) 
tZ 

(Ukx(t -- r)) = (Ukx(t)) + ik'r 1 (Pk(t)) + O(k  2) (140b) 
P 

(uku(t  - z ) )  = (uky( t ) )  - (ik)2T ~ (uku( t ) )  + O(k  4) (140c) 

We have used the hydrodynamic equations (136) and (137) to lowest non- 
vanishing order to eliminate the time derivatives in favor of  the k-expansion. 
Next we consider the functions X,/3z, r and 0, defined in (45). By examining 
these expressions under translations, rotations, and reflections in configura- 
tion and velocity space, one finds that the k-expansions of  ~, /3~, and 
contain only even powers of k, whereas 0 contains only odd powers of k, i.e., 

,~(k, t) = ,~o(t) + (ik)2~2(t) + O(k  ~) 

/~l(k, t) = /~w(t) + (ik)2Dt2(t) + O(k ' )  
(141) 

~(k, t) = % (0  + (ik)2r + O(k4) 

0(k, t) = ikOl(t ) + (ik)SOa(t) + O(k  5) 

As a result of these expansions, we may make a k-expansion of  the heat 
current and the longitudinal components of the pressure tensor as 

(qux( t ) )  = - i k ) ~ ( t ) ( T k ( t ) )  - (ik) 2 7 - 1 ~2(t)(Uux(t))  
r 

+ (ik) 2 ~ ( t ) ( u k x ( t ) )  + O(k  a) (142a) 

(Pkxx ( t ) )  = ( P k ( t ) )  -- ikpDg(t)(Ukx(t))  

_ 2 I_ c%(t)( ik)2(pu(t)  ) + 2 c%(t)( ik)2(Tk(t)  ) + O(ka ) (142b) 
3 p  

( P ~ ( t ) )  = --ikn(t)(uk~(t)) + (ik)3,o(t)(uk~(t)) + O(k ~) (142c) 
The (time-dependent) Navier-Stokes transport coefficients are given by 

a(t) = d~- Xo(,-), 

D~(t) = dr/~z ,o(r)  (143) 

~7(t) = d~- %(r) 
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The (time-dependent) Burnett coefficients are given by 

~ ( t )  = d ,  ~-io(~-), ~ ( t )  = - ~  d ,  01(,-) 

~o2(t) = -} dr .pZSz.o(~- ) (144) 

s ~a(t) = - ~  ( l /T)  d~- 01(~-) = (1 /T)~ ( t )  

and the (time-dependent) super-Burnett coefficient is given by 

~(t) = -  d ,  r + ~ d ,  r%(~-) (145) 

Here we have made an attempt to keep our notation consistent with that used 
by Wang Chang and Uhlenbeck, (14~ and partially by Chapman and Cowl- 
ing, ~15~'5 for the case of the dilute gas. If, for sufficiently long times, these 
transport coefficients approach constant values, then substitution of (142) 
into equation (137) will lead to the linear Burnett and super-Burnett (for the 
case of the transverse velocity field) equations with constant transport coeffi- 
cients. Such equations would then lead to hydrodynamic frequencies z(k), 
which have well-defined expansions in powers of k, where the coefficients are 
determined to order k z by h(oo), D~(oo), and 7/(oo); to order k 3 by vq2(oo), 
~4(oo), w2(oo), and e%(o~); and to order k ~ for the transverse velocity field 
by w(oo). 

This picture cannot be maintained, however, since both the mode-mode 
coupling theory and the kinetic of gases have suggested that Ao(~), /3~,o(~), 
and %(z) depend on ~- for large ~- as ~.-3/2. Such a conclusion is based on the 
two-mode approximation used in this paper, or on the ring events used in 
Ref. 1. As a result of this ~.-3/2 behavior one can see that, although h(oo), 
Dz(oo), and ~(oo) exist, the Burnett and super-Burnett transport coefficients 
~2(t), w2(t), and w(t) do not exist as t -+  oo. Let us investigate the precise 
behavior of all Burnett and super-Burnett coefficients in a systematic way. 
From (44) we deduce that A(k, z), Dz(k, z), ~(k, z), and 0(k, z) are related to 
Uij(k, z) as follows: 

~(k, z) = nC~UT~O~, z);  D,Ox, z) = U.O~, z) 

cp~zT (146) 
~(k, z) = pU, l,~(k, z); 0(k, z) = (7 -- 1) ~t2 UTz(k, z) 

5 To compare the notat ion used in this paper with that  of Chapman and Cowling, we 
note that  using their Eqs. (15.3.4) and (15.3.6) and our Eqs. (144) and (145), the 
following relations hold: 

v~2 = 02lz2/pT;  v% --- OdzZ/p; 

w2 = ~2 t z2[P;  oJs = ~ 3 # ~ ] p T  
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We will therefore consider the k-expansion of ~ ( k ,  t) in general. In fact, 
we are only interested in the dominant contributions to these terms for large 
t and small k, or equivalently in the leading singularities in U~(k, z) for small 
k and z. According to our basic assumption, the leading singularities in 
U~(k, z) are given by the mode-mode integrals, which are analyzed in 
Appendix B. It is found there that for small k and z 

1 d~ Sff(~t, Ui~(k, z) -~ Ut~(0, 0) - ~. ~ - q )  4rr(2D~u)a/2 

l ~ f d~t sgi~(r _ ~  ( z + iack(tx) ~t: 
2 ~ 4rr(2D~) a/~ 

(147) 

where the sum over A and tz runs over the diffusive modes (~ ,  ~72, T), and 
runs over the sound modes (a = _+). A straightforward k-expansion of 

(147) at fixed z and subsequent inversion of the Laplace transform by means 
of (114) yields 

O~j(k, t) = Oo,~j(t) + ikU~,~j(t) + (ik)2Cr2,~j(t) + ... (148) 

where the coefficients for large t are given by 

M~?(O) 
8o,~j(t) ~- t -312 ~ flp(8~rD~b)al 2 (149a) 

(ab)  

0~,~j(t) --- (8~rD~)a12 2 ~ S~5-~(~, -f0e~x (149b) 

c~t 112 1 d~l ~ ~ 
02,ij(t) - 2(8~rD~) a/2 2 ~ f ~ S~,- (~, - fl)~ 2 (149c) 

In (149a) we have introduced the matrix elements ~b M, i (0), which are defined 
in (113) and have the values given in Appendix C. The summation index 
(ab)  takes the values (~/~), 0?T), (TT), and (ss), and D~b = �89 + Db). 
Equation (149a) describes the long-time behavior of the correlation functions, 
and is in fact the first term of (115). The matrix elements of U0(t) and U2(t), 
or 01(t), are only nonvanishing when Sfj-~ - ~ )  contains terms which are 
respectively, even or odd in ~x. 

If  we apply (149a)-(149c) to (146), we see from the expressions (C.4)- 
(C.10) in Appendix C that S~.~ ~, S~ -~, and Sgl~ are even functions of c]x, 
and Sgr -~ is an odd function ofc]x. Therefore the k-expansions of the functions 
A(k, t), /3z(k, t), and ~(k, t) contain only even powers of k, where A0(t), 
/3~,o(t), and %(0, defined in (141), can be taken directly from (149a) and 
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(146). We further need to know ~2(t), defined in (141). According to (146) 
and (149c), it is given by 

c2t 112 l ~ f de~ 
,7~(t) ~- p 2(8~.9 , )~  2 U~ sg~?;(~, - ~ # , ?  

C21115 

70/3(8~rD~) 3/2 
(150) 

where we have used (C.4). The k-expansion of 0(k, t) contains only odd 
powers of k, and, according to (141), (146), and (149b), is given by 

pc.r ct - ~  1 ~  f de~ S~(e~, -4)~4,, 
Oz(t) ~_ (y - -  1) ~I2 (8rrD~) a/z 2 

3/3(8~-D~) 3/2 c~T + c ~nn s 

where we have used (C.10) and (C.18). 
From Eqs. (148)-(151) we can determine the precise behavior of the 

Burnett and super-Burnett coefficients defined in (144) and (145). The results 
for the Burnett coefficients are 

2C~<~> M~,~(0) t~r (152a) 
v~2(t) -~ tim (8~rD~b) al2 

~( t )  = ro,~(t) .z 5(8~D3~, = (5 ~ r  
n {ae] ; t l ,  2 (152b) 

+ c \anls  ) 

3 <~ M~p(0) tl/2 (152c) 
o,~(t) _~ ~ > (8~Oob)3~ 

and for the super-Burnett coefficient 

_ c 2 

oo(t) ~ 105fl(8~rD~),i2 t 3/2 (153) 

The values of the dimensionless coefficients M~(0) are given in Appendix C. 
We have shown, therefore, that all Burnett coefficients ~2(t), v~4(t), 

~o2(t), and o~a(t) grow as t 1/2 as t gets large, and that the super-Burnett 
coefficient grows as t 8/2 as t gets large. Notice also that the second term in 
(145) does not contribute to the dominant time behavior. In addition, one 
can see by inspecting the expressions for the heat flux and the pressure tensor 
that the coefficients of the t 1/2 term in these quantities do not vanish by a 
fortuitous cancellation. 
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7. D I S C U S S I O N  

In this paper we have considered the analytic structure of  the linearized 
hydrodynamic equations. Our analysis has been based either (for a general 
fluid without internal degrees of freedom) on the application of the mode-  
mode coupling theory to the elements of the transport matrix U~j(k, z), or 
(as discussed in Ref. 1 for a gas of  hard spheres at moderate densities) on the 
assumption that the behavior of  U,j(k, z) for small k and z is determined by 
the ring (and repeated ring) dynamical events. 

The major results of the analysis carried out here are as follows. 

1. The hydrodynamic equations beyond the Navier-Stokes order have a 
very intricate structure. There is no longer an orderly progression from the 
order-k 2 Navier-Stokes equations, to the order-k 3 Burnett equations, to the 
order-k * super-Burnett equations, and so on, as one considers disturbances 
of increasingly larger wave number k. Instead, there is an infinite number of  
powers, of the form k2+V,, P~ = 1 - 2 -~, n = l, 2,..., which appear between 
order k 2 and order k a. This is because the dispersion relations have a k- 
expansion of this form. 

2. In addition to poles, the hydrodynamic matrix also has branch points. 
The relative importance of  the pole and branch point contributions depends 
on the particular time scale of  interest. We found that for times of  order 
ra(k) ,~ (Dk 2)-~ the k 2 +~- corrections to the hydrodynamic poles are more 
important than the contributions from the cuts in the z plane, but that for 
times of  order %(k) ,,, (ck)-1 the branch point contributions are at least as 
important as the k 2 +F, corrections to the poles. 

3. Asymptotic correction terms to the long-time behavior of the correla- 
tion functions, which are of the form t-2P-+2 with n = 1, 2, 3,..., are a direct 
consequence of the k 2 +P. terms in the dispersion relations. 

4. A straightforward expansion of  the hydrodynamic equations in 
powers of k leads to expressions for the Burnett and super-Burnett transport 
coefficients which diverge in the long-time limit. In this paper we have 
considered the coefficients connected with the hydrodynamic equations for 
the velocity and temperature. 

It is interesting to compare these results for the generalized hydro- 
dynamic equations in fluids with the generalization of Fick's diffusion 
equation to higher order in k. To find corrections to Fick's law, one can again 
analyze the transport matrix elements by means of the mode-mode formula, 
and can determine the hydrodynamic poles and the location and nature of 
the branch point singularities. The dispersion relation for the relaxation time 
of the diffusive mode does not contain terms of the form k2+P~, n = 1, 2,.... 
This is because the antiparallel sound modes, which are solely responsible for 
the k 2 +P- terms in the frequencies of diffusive modes (heat and shear), do 
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not contribute in the self-diffusion case. In fact, it appears that it is not 
possible to describe the decay of an excess density of tagged particles in 
terms of corrections to Fick's law in the form of a dispersion relation, since 
on the time scale ~a(k) ~ (Dk2) - ~ the contributions from branch cuts are 
more important than the contributions from the hydrodynamic poles. (la) 

The long-time behavior of the velocity autocorrelation function 
(v~(t)vx)oq shows the same behavior as the correlation functions discussed 
in (115), and its dominant contribution for long times comes from a combina- 
tion of  a shear mode and the self-diffusion mode: 

2 
(v~(t)V~)eq ~- 3fip[4rr(D, + D)t] a/2 

f ~ An(n)F(1  + 2 P . + 2 )  } 
x 1 + D, + ~  r(3/2) [(D, + D ) t ] - ' ;  ~ 

where D is the coefficient of  self-diffusion. We have used the fact that the 
frequency of  the self-diffusion mode does not contain terms of O(k  2 ~P,). 

The coefficient of the t -3/2 tail has here been taken from Ref. 5. The 
difference between diffusive modes in fluids and the diffusive mode of tagged 
particles is also reflected in the behavior of the super-Burnett coefficient, as 
has been discussed by Keyes and Oppenheim, (16) Dufty and McLennan, (17) 
and de Schepper et al. ~18~ In the case of self-diffusion, the appropriate super- 
Burnett coefficient diverges as t 1~2 for large t, not as t 3/2 as is typical for the 
super-Burnett coefficient discussed in Section 6. This is because combinations 
of antiparallel sound modes, which lead to the t 3~2 divergence for other 
transport processes, do not contribute to the super-Burnett coefficient for 
self-diffusion. 

Results similar to those given here for the coefficients of the k 2 + P- terms 
have been found by Pomeau. (6~ However, in almost every case the coefficients 
A,(n), As(n), and Ns(n), given by Eqs. (89)-(99) differ from the corresponding 
results found by Pomeau. This difference can be traced to four main sources 
of error in Pomeau's calculations: (i) Trivial mistakes either in sign or in 
algebra. (ii) A systematic replacement of the quantity which corresponds to 
S(~I, - ~1) in our Section 3 by an average value S, where S = (4~r) -1 f dfl S(fl, - t]). 
This replacement is not correct in the mode-mode formula for U(k, z) given 
by Eq. (65), since denominators appear which also have a dependence on the 
~]. This wrong approximation also explains why Pomeau's coefficients for the 
long-time tails in C,(0, t), defined by Eq. (115), and his coefficients for the 
k2+P, terms in the dispersion relations (89) are related in a simple way. 
However, it is clear that in Cu(0, t) a replacement of S(fl, - 4 )  by S is allowed, 
since nothing else in the appropriate integral depends on ~], while it is not 
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allowed in the calculations of  U(k, z). (iii) The term 0(k, z) is neglected in 
the expression for the sound damping constant 

Uoo(k, z) = �89 z) + �89 - 1)DT(k, z) + (~O(k, z)(c~c/nCP) 

Pomeau has argued that 0(k, z) is proportional to k, while here we have 
demonstrated that the term is of 0(k1~2). (iv) The hydrodynamic frequencies 
are determined as the solution of the wrong equation. That is, Pomeau solves 
z ,  = k2 D , ( k ,  z , )  and z~ = i~ck + k2u~(k ,  z), instead of the correct equations 
as given by Eqs. (55)-(57). 

It is of considerable interest to determine whether the complex analytic 
structure found for the hydrodynamic equations has any relevance for 
experiment. In Ref. 1 we showed that, for dilute gases, the k 5/2 terms present 
in the sound dispersion equation are undetectable at the present time. It 
might be more appropriate to look for applications of the results obtained 
here, which hold for a general fluid, to experiments on fluids at liquid den- 
sities. It remains to analyze the results given here in order to determine the 
magnitude of  the effects in experimental situations. 

A P P E N D I X  A 

In this appendix we will briefly review those fluctuation formulas that 
are needed in the body of the paper, and which have been evaluated by Ernst 
et al. (5) We refer to their paper for the details of  the calculations. In this 
appendix, expressions for the mode-mode amplitudes A~(~, l) are also given. 

We consider fluctuation formulas in a grand canonical ensemble, 
characterized by the parameters fl = ( k B T ) - I  and v = fl/x, where /z is the 
chemical potential. The fluctuation formulas considered are given in general 
in the form (ak, bk) and (ak, bqc~) where the inner product is defined in Eq. 
(13), and where ak, bk, and Ck are Fourier transforms of microscopic densities 
which satisfy (1, ak) = (1, bk) = (1, ck) = 0. 

We consider first (ak, bk) and observe that for small values of k the 
inner products have the form 

(ak, bk) = (ao, bo) + O(k  2) (A.1) 

when ak and bk are scalar functions. The term linear in k vanishes due to 
spatial isotropy of  the equilibrium averages. Now let ak be the Fourier 
transform of  one of the microscopic functions nk, gk, ek, or ~'kxx, defined in 
Eqs. (10) and (34). In the small-k limit they satisfy the relations 

(ao, eo) = - (Oa/Ofi)v; (ao, no) = + (Oa/Ov)e (A.2a) 

(ao, So) = - ( n T ) -  l ( ~ a / ~ )  v ; (ao, Po) = ni l -  l(~a/~n)s (A.Zb) 
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where Sk and Pk are defined in (15) and where n, e, P, and S are, respectively, 
the values of the number density, energy density, pressure, and entropy per 
particle in thermal equilibrium. Here ao should, according to Eq. (9), be 
taken as 

ao = A - (A)~q (A.3) 

where A = f dr a(r) and a = (a(r))eq = V- l(A)oq. For a = n, e, and g these 
expressions are given in Eq. (10a). For the longitudinal component of the 
longitudinal momentum density one has from Eqs. (34) and (9) 

~'oxx = Sx~ - (J~x)e. = J ~  - P V  (A.4) 

where, according to (34), 

N 1 N N 

i = i ~ § y = z ~rii,x 

The second equality in (A.4) is the virial theorem. 
If  ak in (A.2) is a linear combination of nk, ek, gk, and % ~  with coeffi- 

cients depending on thermodynamic parameters, one may apply (A.2) to each 
of the terms separately. This yields 

(So, So) = kBCp/n; (So, eo) = (So, Zox~) = 0 

(Po, Po) = (Po, ~'oxx) = pc2/fl (A.6) 

In a similar way one can show that 

(no, To) = 0; (To, To) = T/nflCv (A.7) 

where Tk is defined in (129) and we introduced here the specific heats per 
particle Cv and Cv, and the adiabatic sound velocity c. 

Next we consider the higher fluctuation formulas (ak, bqcl) with l = 
k - q, in the limit of small k and q. We need only the following combinations, 
which have been evaluated by Ernst et al.(S): 

(~oxx, SoSo) 

l%Ce { 1 (OCv~ 1 ( & * ) )  (A.8a) 
- /3n ( 7 - 1 ) 1 - ~ - - C p \ - - b - - f f ] p +  ~ ~-T e 

($oxx, SoPo)= [n'~2f[OS] [02~'~ (OS'~ (~2v'~ \ (A.8b) 
\~ /  kl~-~fl /,~-ff~n2/s + \ av ]Bl, an2lsfl 
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2pc 2 _ y - 1  
/~= {n ( ~ ) s  2-g-7 ~ ) (A.8c) 

(Coax, go~goe) = -~ 3~x3Bx 2c~T 

P 3~8~}  (A.8e) (ro~u, go~goe) = ~-fi {S~Se~ + 

(]~,, go,So) = Cp/fl ~ (A.8f) 

(jax, goxPo) = pc=/5 ~ (A.8g) 

where y = Cp/Cv and r = -n-~(On/aT)p. In (A.8d) and (A.8e) the labels 
~z,/~ denote Cartesian components  (x, y, z). 

These fluctuation formulas are needed to evaluate the m o d e - m o d e  
amplitudes A~(~, i) defined as 

A~*(~I, i) = ( ) ~ ,  a,~aE) (A.9) 

with 1 = k - q, and Cl and i are unit vectors along q and 1, respectively. The 
label i takes the values ~7~ (i = 1, 2), T, l, and (r (~ = + 1), and the projected 
currents ) ~  are defined in Eq. (42). The superscripts (r, s)  = (~7~, ~=, T, 
(r = + 1) label the hydrodynamic  modes a~ ~ defined in Eq. (17). 

Using (A.8), we can immediately write down the expressions for all 
m o d e - m o d e  amplitudes: 

h i ~ j  n~nJ ^ i) t~,~-l/2s,v iJ + q• } (A.10) 

Ag~-*(~, i) = -- (tip) - 1/2�89 + qu[x} (A. 11) 

A}#(~I, i) = (tip) - ~/24~ (A. 12) 

A}-  r i) = (/3p)- ~'2�89162 7 - 1)l'2/c~Tl(q~ - ix) (A. 13) 

AF";(~, h = (/30)- ~'22{q~J','~ - [(7 - 1) /2~T]~j .  id} (A. 14) 

Arr(ft, 1) = ([3p)-~'2(y - 1) 1 - ~ \ - ~ ] e  + ~ ~ e (1.15) 

{ Y - l ( 1 - ~ l . i ) + n ( b e ) )  (1.16)  
(Sp) - ~  -Gi~ -2-d-T- 7 Un 

(a'/V2)A~''(~I, h (A.17) 

[(y - 1)z/u/V2IA~#r(~, l) (A. 18) 

(e'/V'2)A}~r0] , i) (A. 19) 

(y 1) ~12 
- -  O" c r - o  " ^ 

V'2 A~-~(~[, i) + ~ At (q, i) (A.20) 

A ~ - * ( q ,  i )  = 

A; ; ' (~ ,  i )  = 

A~";T(~, i )  = 
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The set of  unit vectors q, q-* (i = 1, 2) are mutually orthogonal, as are 
the set [, ]jj (i = 1, 2). The amplitudes with (r, s) = (aa), (aT), and (a~7,) are 
not listed, since they are not needed in our theory. All other unlisted ampli- 
tudes vanish. 

In order to have a complete list of  relevant amplitudes, it is worthwhile 
to consider the amplitudes involved in the correlation function C~(0, z) for 
the bulk viscosity, which are defined as 

A ~ 0 ] , - 4 )  = (fl/p)~/2�89 ~ (.~ox~,a,aaa~,~)= �89 ~ ,  A,~b(~l,--r (A.21) 
X = X , I I , Z  X = X , ~ I ~ Z  

and we find from (A.14)-(A.16) 

A'~ ' ' (~ t ' - r  2 -  Yo:T-1) 3~j (i,j = l, 2) (A.22) 

{ 1 (r3Cp~ 1 (~) } (1.23) A~T(fl, --q) = ({3P)-llz(7 -- 1) 1 - ~ \ -~--]p + ~ ~-~ P 

A g - " ( , , - , ) =  (/3p)-1/2{ 1 7 -  lc~T + c  7n s n ( 0 c ) }  (A.24) 

A P P E N D I X  B. THE M O D E - M O D E  I N T E G R A L S  FOR S M A L L  
V A L U E S  OF k A N D  z 

The mode-mode integrals have the general form 

= ( '  dq S~,b(Ch, ~2) (B.1) 
U~]b(k, z) .] (2--~)3 z - ~ - Z  L(q2) 

where ql + q2 = k, and we take k = k l .  It will be convenient to write 
ql = q + vlk and q2 = - q  + y2k, where 71 = 1 - y2 is an arbitrary real 
number. This is done in order to simplify a number of integrals which will 
appear later. The prime on the integral sign indicates that Iql < ko. The 
vectors ~]1 and 42 are unit vectors parallel to ql and q2, respectively. 

We make the following ansatz for the frequencies z~(k) for small k with 
c~ = a, ~/, T: 

zu(k) = - D , k  2 + A,k 2+~, t~ = 7/, T 
(B.2) 

zo(k) = - l a c k  - Dsk 2 + (&~ - ia~s)k 2+P, a = + 

where �89 ~< P < 1. The coefficient of k 2+P in z, is in general complex. From 
the observation z** = z_o, made in Section 3, it follows that the real part 
of this coefficient is an even function of  a, and its imaginary part is an odd 
function of  a. 

In the following discussion we investigate the behavior of U~-~(k, z) for 
small values of k and z, starting with U,~-*(k, z), For  this case we choose 
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~'~ = 72 = �89 so that ql 2 + q22 in the denominator of (B.1) equals 2q 2 + �89 2. 
The dominant contributions to U,~--~(k, z) come from regions where the 
denominator of  (B. 1) becomes small, i.e., from regions around the lower limit 
of the q-integration. In this region the denominator approaches z + i(rckx, 
where x = k 'q ,  and the larger of  the two small parameters z and k will 
determine the dominant behavior of  the integral. Therefore we introduce a 
small parameter 0 = max(z, k), which is equal to the maximum of  z and 
k. It is convenient to divide the interval for the q-integration into two regions: 
0 < q < NO (N > 1) and NO < q < ko. In the first region we make the 
substitution q = Oy, and we determine the leading term for small 0. The 
function S~-~ 42) can be bounded from above by a constant; the denomi- 
nator approaches (z + i(~c(yl - Y 2 )  + O(02)}, where y~ = O-tq~. Therefore 
the contribution from the first region to U~-~(k, z) is of  O(02), and we can 
write (B.1) as 

f fN 2 (ql, q ~ ) ( 1  - F(q)} 
u ~ - ~ ( k , z ) =  d4 ~o S ~ - ~ ^  ^ 

o dq q - z - ~  = z_---~-( q ) 

+ O(02) (B.3) 

where 

F(q) = z - z~(ql) - z-~(q2) + z~(q) + z_~(q) (B.4) 
z - z~(ql) - z-o(q2) 

The q values in (B.3) are always larger than k, so that we may expand the 
integrand of (B.3) in powers of  k. Consider first the functions S~'j-~(41, q2), 
which, according to (66), are given in terms of the amplitudes A~-~(41, 42). 
The amplitudes, calculated in (A.10)-(A.24), depend on 41 and 42 only 
through the combinations ~1~2~ ('~ = x, y , z ) ,  ((hxO2y + ~ly~2x), and 
(O~x - O2x). These functions are obviously even functions of k. For  small 
values of k these combinations are equal to their value at k = 0, plus a 
correction term of relative order O(k2q-2). Hence, 

S'-~(4~, 42) = S~- ' (4,  - 4 ) [  1 + O(k2q-2)] 

The integrand in (B.3) consists of two terms; one term, which does not 
contain F(q), yields a constant U~-'(0, 0), plus a correction term of  O(0) 
from the lower limit, plus a correction term of  O(k20 -1) <~ 0(0), which 
results from the O(k2q -2) correction to S~176 - 4 ) .  In the second term of  
(B.3), containing F(q), we make the substitution q = 01/2y, so that (B.3) can 
be written as 

U ~- '(k,  z) = U ~- ~ O) 

0 ~  f ek~ S~-~(4, -4)[1 + O(k2y-20 -~) 
(27r) a _ d4 J N ~ / ~  - 2 - ~ 2 A ~ y V O  v'2 

X F(O~/Zy) + 0(0) (B.5) 
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where 

F(Oll2y) 
z + i(rckx + O(k3y-20 -~) + O(kyl+eO ~+�89 

z + iackx + 2D~y20 - 2Asy2+eO~+�89 + O(kay-20 -~) + O(ky~+PO ~+�89 

(B.6) 

One can easily estimate the correction terms in (B.5) and (B.6) to be at least 
of O(0). 

The numerator and denominator in the integrand of (B.5) still contain 
0-dependent terms of relative order 0 P/2. The coefficient of the first correction 
term, which is of order 0 ~+�89 can be determined from (B.5) by expanding the 
integrand in powers of 0 e/2, and keeping only terms linear in 0 P/2. The result 
of (B.5), correct to O(0), is then given by 

u s -  ~(k, z)  = U s -  ~(0, 0) 

f d~ tS~ - ~ ( ~ l ' - ~ l ) (  ~176 ~ [ q p A~ ~+  2q2 ] 
4rr 4--fi-D~ 2o aq ~ 1 + D~ -~ -+-~] + 0(0) 

(B.7) 

where we have extended the y-integration in (B.5) to the interval (0, ~),  which 
again introduces errors of O(0). In (B.7) we have changed back to the original 
integration variables and we introduced 

= (z + iackx)/2D~ (B.8) 

This result implies also that z in (B.8) should be replaced by zero if z = 
O(k~). 

As the next step we evaluate the q-integral in (B.7) for real, positive ~, 
and extend the result to complex ~ by analytic continuation. Since the 
integral 

fo ~~ qP ~(~ + 2q 2) = ~(P+ ~)/2 7r(P + 3) (B.9) 
(~ + q2)2 4 cos 21-~P 

we find from (B.7) 

u s-o(k, z) = u s-~(0, 0) 
f ~  s~-~(~,-4) [~,~ 

4~r 81rD~ + 
A~ P + 3 ~(e + 1)12 ] 
D~ 2 ~ - ~ - ~  ~ ] + o(o) 

(B.10)  

where broken powers of ~ are uniquely defined for complex ~ by introducing 
a branch cut along the negative real axis from ~ = 0 toward minus infinity. 

For a discussion of U~"(k, z), where (A, t0 label diffusive modes 071, ~/2, T), 
we choose ~'1 = 1 - 9'2 = Du/(2D~,,,), with 2Da, = Dx + D,,  so that 

D~,ql 2 + D~q22 = 2D~,,q 2 + k2(D~,D~,/2DA,) 
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We divide the q-integration again into the regions 0 < q < NO and NO < 
q < k0 with N > 1 and 0 = max(z, k). The contribution from the first region 
is estimat2d in the same way as before, and yields a term of O(03~-1), where 

= (2D~,)-l[z + (DAD,/2D~,,)k2]. We then arrive at an expression similar 
to (B.3) and (B.4), in which cr and - a  are replaced by A and tz, respectively, 
and the term of  0(02) in (B.3) is replaced by O(03~ -1) ~< O(0). In order to 
proceed, we have to consider first the k-expansion of the functions S~"(~1, ~h)- 
In the previous case the strength factor S~176 ~]z) contained only even 
powers of k. This property remains valid whenever two heat modes or two 
shear modes are involved. However, for strength factors S~,r(fh, ~ )  con- 
taining a heat mode and a shear mode, odd powers of  k also enter into the 
k-expansion of  the strength factors. The terms involving odd powers of k 
have coefficients that are odd functions of x, while terms involving even 
powers of  k have coefficients even in x. From here on the analysis proceeds 
in the same way as before, using in addition that odd functions of  x vanish 
due to angular q-integrations. The final result then reads 

U~U(k, z) = U ~"(0, (3) 

fdejS~"(e~,--~)[ A ~ A , +  3) ] 
~l/z + D~u2cos�89 + 0(0) (B.11) 47r 81rD~, 

The implications of  this result are as follows. If  z <~ O(k2), so that 0 = k 
and ~ = O(k2), then the leading term in (B.11) is proportional to V'~ = O(k), 
and is of the same order as the neglected terms of  O(0). The only conclusion 
to be drawn is then 

UX"(k, z) = Ux"(0, 0) + O(k) for z <~ O(k z) (B.12) 

The term in (B.11) proportional to ~(P+~)/2 is only meaningful when it is 
larger than O(0), which is the case for z > O(k z/(P+ 1)). In Section 3 we use 
(B.11) for P in the range �89 ~< P < 1 ; so we should restrict z to be larger than 
or equal to O(k), and we should therefore neglect the terms of O(k 2) in ~. 
Thus Eq. (B.11) holds if 

z >i O(k) (B. 13) 

and 

= z/2Dau (B. 14) 

The remaining mode-mode integrals U~.~(k, z) and U~b(k, z) can be estimated 
with the result 

US~O~, z) = U~f(O, O) + 0(0) (B. 15) 

and a similar result for U'a(k, z). 
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An inspection of  three-mode contr ibut ions to U~(k ,  z) and o f  contr ibu-  
tions f rom the higher terms in the k-expansion o f  the hydrodynamic  modes  
indicates that  these contr ibut ions are less impor tan t  than  the ones considered 
here. 

A P P E N D I X  C 

In  this appendix  the m o d e - m o d e  strength factors ~ ^ S~j (q, -~]) are calcu- 
lated, as well as the coefficients Mg-b(n), which involve certain angular  
averages of  the strength factors.  

F r o m  the results o f  Appendix  A the strength factors,  for  k = 0, defined 
a s  

ab ^ S, ,  (q, - c]) = A~b(~, -- ~)(A~b0], -- ~))* (C. 1) 

can be calculated in a s t ra ightforward manner .  I t  is convenient  to take all 
degenerate shear mode  contr ibut ions together,  using the identity 

4~0~ + E "' "' q.t,~qJ_B = 3,B (C.2) 
~=1,2 

where c~,/3 = x, y, z label Cartesian components .  The  results are 

2 

i , ] =  l 

s.~.~ (q, - ~) = 

2 

~, ~'r t q ,  - e l )  = 
i = 1  

s ~ ( ~ ,  - c O  = 

2 

i , j = l  

s , ~ ( ~ ,  - ~ )  = 

s ~ J ( 4 ,  - ~ )  = 

s ~ - ' ( ~ ,  - ~) = 

2 

i , 1 = 1  

2 

E Sn~T(~ ~ , q ,  - ~ )  = 

i = l  

(3p)-12[1 _ 4x~ _ 4 2  + 24 2q ~] (C.3a)  

(/30)-1(1 + x 2 - 2x ~) (C.3b) 

(3p)-  ~q~2q~ 2 (C.4a) 

(2/3p)-lx2(1 - x 2) (C.4b) 

(tip)- ~(1 - x 2) (C.5) 

( / 3 p ) - 1 ( ~ , -  1 ) ( a T ) - 2 x  2 (C.6) 

(/3p)-14[(1 - x2) 2 + A(1 - x 2) + 1A21 (C.7) 

( t~e ) - lB  ~ ( c . 8 )  

( f ip)- l [x  2 + A + D] 2 (C.9) 

( ~ p ) _ l  (r  - 1) "~ 
aT ax[x2 + A + D] (C.10)  

(/3p)-12[(1 - x 2 )  2 + A(1 - x 2) + � 8 9  2] (C.11)  

(tiP) -10,  - 1)�89 -- x 2) (C. 12) 
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where 

STT(• a a  , ~ ,  - -  I]) = ( t i p )  - i�89 ( C .  1 3 )  

o., _ o.p ^ S ~  (q, -~]) = (/3p)-~�89 2 + A(1 - crcr'x) + D] 2 (C.14a) 

-~ (~O) - ~ M(acC x) (C. 14b) 
9, 

~,ntnj(~ ~,~ ~,j, - ~ )  = ( /~ ) -~2[~  + A] ~ (c .15)  
i , i  = i 

S~r(~ ,  - fl) = (/30)- ~B2 (C. 16) 

S ~ - a ( I ] ,  - - I ] )  = ( t i p ) - 1 [ 1  + A -t- D] u (C.17) 

aT  ' D = e s 
(C. 18) 

B =  l - E c - ; @ - f ] p +  ~ ~ ( ~ ' - 0  

In these expressions x = ~Jx. We notice further that  the equalities (C.3b) and 
(CAb) are actually the averages o f  (C.3a) and (C.4a), respectively, over the 
azimuthal angle. The equality sign applies only under the integral sign 
f dfl, which is all that  is needed. 

In the second part  of  this appendix the quantities M~b(n) defined in (76) 
are calculated, starting with (~ = ~, T) 

M~(n)  = ~ tip $7,~-~ -~)lxl~. (C.19) 

Using (C.4) and (C.6), this yields 

M~(n) -- [(3 + P=)(5 + p~) ] - i  (C.20) 

M~.~(n) = (9' - 1)(aT)-2(3 + P~)-I  (C.21) 

The quanti ty M~(n)  is defined, according to (85b), as 

M~(n)  = �89 dx M(x)(1 - x)V. (C.22) 
1 

where P .  = 1 - 2 -". F rom (C.14) we find 

M ~ S ( 0 )  = 1 1 ~ A  2 ~(~ + ~(A + D) + + 2AD + D 2) (C.23) 

M~(1) = V~ 5. . l l  + A + y:3--.~ D + ~ + 3 A D + ~ D  ~ 

(C.24) 

Ts-A + ~D + 2A 2 + ~AD + D 2) (C.25) 
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Table I. Values of M~(0) 

ss ~1 ~T TT 

~- ;~ o o 
�89 - 1)/(aT) 2 0 ~ 0 

+ ~-(A + D) + (A + D) 2 ~ + ~A + A 2 0 {B 2 T-ff 
(~-+ A + D) 2 ( ] +  A) 2 0 �89 2 
�89 + ](A + D) ~- + {-A + �89 2 �89 - 1) �88 2 

+-~A 2 + 2AD + D 2] 

~n The next set o f  quantities to be considered are M ss(n~,r~v~, M ,  (0), M~(0) ,  
and M~r(0) for r = a, ~h, T, l, and ~, defined as 

M~(0) = ~/3p ~ SrS-~(~, -@ 

M ~ n ( O ) = ~  ,,; ~-~S~ ( q , - O  

(C.26) 

M;~(O) tip . 4~ ~ 'q '  - 0 )  

1 f d~,~T~a g,~7(O) = ~ /b  ~ ~ .  ,-~, - @  

Notice that  (C.19) and (C.22) reduce to (C.26) for n = 0. The results are 
given in Table I. 
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